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Abstract. This paper investigates the deviations from exponential decay law for quantum 
resonant states which can be approximately described by Lorentzian line shape spectral 
distributions. We point the significance of the Lorentzian distribution in both classical and 
quantum theory of resonances and its close relevance to the exponential decay law. Using 
quite general physical arguments, such as the finite expectation value of the energy and 
the kinematical dependence of the distribution, we investigate the appearance of these 
deviations for short and long times respectively. We construct an analogous to the 
continuity equation describing the correlation between exponential and non exponential 
decay. When a measuring perturbation cancelling the terms in the second part of the 
equation is possible, interesting questions arise as is for example whether the quantum 
Zeno effect, in the limit of very short times, does really appear. It is found that besides the 
homogeneity of the proposed continuity equation, other factors, such as the energy 
dependence of the resonance�s complex energy shift, play an important role in the 
observability of the non exponential decay.   
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1. INTRODUCTION 
Resonances in quantum mechanics correspond to the unstable quantum states, and acquire 

a complex energy spectrum. The latter seems to contradict with the structure of quantum 
mechanics which is built in terms of eigenvectors in Hilbert space supporting a real energy 
spectrum. However the unstable quantum state is an important example of irreversible 
phenomena in nature and has a distinct role in quantum mechanics, ranging from excited atomic 
states to short-lived elementary particles.  

      The resonant states interact and finally decay into continuum spectra. Their spectrum turns 
to be complex since the imaginary part of each pole, equal to /2, is directly related to the mean 
lifetime of the corresponding state via the /h , and expresses half the energy width of the 
resonance. The real part is constituted by both the energy value of the unperturbed state and 
the energy shift due to the interaction with the continuum, giving the energy position of the 
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resonance rE , (or resonance mass in the relativistic case).The study of the decay of an 
unstable quantum state began with Gamow�s theory [1] of alpha decay of atomic nuclei and 
Dirac�s theory [2] of spontaneous emission of radiation by excited atoms, while a general 
treatment of decaying systems was given by Weisskopf and Wigner [3] and by Breit and Wigner 
[4].  Siegert [5] was the first to associate the complex poles in the S-matrix of Wheeler [6] to 
quantum resonances. 

      The signature of a resonant state is its spectral distribution. During the ages many models 
have been proposed for the choice of the spectral distribution, see for example [7-12] and 
references therein. Real and complex spectral distributions construct propagator functions with 
substantially different properties and conseque-nces on the system�s time evolution. One of 
them seems to be the different type of non exponential decay for both regions of short and long 
times. The term non exponential decay is used for the description of the deviation from the 
exponential decay law, related to the evolution of the survival probability during an irreversible 
process. Although the exponential decay law is the universal hallmark of unstable states, 
deviations from it often prove to be more consistent with quantum mechanics. The 
dimensionless ratio 

      2 /   rE                                                                      (1) 

which is defined as twice the ratio of the energy position to the energy width of the resonance, is 
proved to be a very crucial and important quantity related to the appearance of such deviations, 
[13]. Deviations from the exponential law are present at times very close to the initial preparation 
time t = 0 and at very late times, while at �intermediate� times the exponential law represents a 
very good approximation. The intermediate � time region alone satisfies the simple composition 
law of probabi-lities 1 2 1 2( ) ( ) ( )P t P t P t t . In this domain, therefore, a classical probability law 
operates, and the results for the two � step measurement are the same as for the one step 
measurement. At late times the decay law follows a power-law, which is however very difficult to 
observe experimentally because it occurs at times for which the survival probability is already 
vanishingly small. On the other hand, the deviations at small times occur within a very short time 
scale, for instance 10-15s for the electromagnetic decays of an excited hydrogen atom [14] and 
even shorter for hadronic decays [15]. Beyond the theoretical prediction of such deviations there 
is much clear evidence for their experimental observation as well. The above may take place in 
many different branches of natural sciences, such as Nuclear Physics and Radioactivity, [16,17], 
Quantum field theory, [18], Atomic and Molecular Physics, [19,20], Charge transport, [21], Fluid 
dynamics, [22], Magnetism and spin dynamics, [16,23,24], Optics, [25],  Chemical reactivity, 
[26], Biology, [27], Acoustics, [28], Geophysics, [24],Stochastic differential equations, [29], and 
may correspond to the presence of an unusual property in the system�s dynamics, [30,31]. The 
above appear to be only a part of the extensive literature related to this subject.            

      This work studies the deviations from exponential decay law, in the framework of Lorentzian 
line shape spectral distributions. For this we first show the way the Lorentzian distribution 
appears in both quantum and classical mechanics. In quantum theory it is the work of Breit and 
Wigner [4], who studied the behavior of unstable particles, that revealed the Lorentzian 
distribution as the expression of the  averaged phase shift of a wave in a scattering process. In 
classical mechanics the Lorentzian distribution describes the mean amount of energy absorbed 
per unit time, which is twice the mean value of the dissipative function, of a harmonically driven, 
harmonic oscillator with friction. It corresponds to a kind of dependence which is called 
dispersion-type frequency dependence of the absorption, [32]. We distinguish two types of 
spectral distributions, the Lorentzian with a semibounded spectrum, which we call truncated 
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Lorentzian distribution, and the generated complex Lorentzian distribution which occurs when 
keeping only the physical appropriate energy pole. 

      Next, we explore the appearance of the deviations from exponential decay in the limit of 
both short and long times. We use general arguments to show, that at short times the non decay 
probability falls off less rapidly than would be expected on the basis of the exponential decay 
law. The central point is that the time derivative of the survival amplitude at t=0 is both finite and 
purely imaginary. In the limit of long times we use kinematical arguments to show that the decay 
has a time power law.  

      In the last part of the paper, we study the observability of the non exponential decay in the 
limit of very short times. For this we develop a model for the study of the correlation between 
exponential and non exponential decay, by constructing an analogous to the continuity equation. 
The homogeneity of this equation is achieved through the process of a measuring perturbation 
and is related to the observability of the non exponential decay. We discuss the possibility of the 
appearance of the quantum Zeno effect, in terms of a measuring process. Since the energy 
dependence of the resonance complex energy shift turns to be quite important, we explore 
these topics for various strengths of the above mentioned dependence.  

 

2. LORENTZ LINE SHAPE DISTRIBUTION IN CLASSICAL AND QUANTUM 
MECHANICS 

      The fingerprints of a resonance reflect on its spectral distribution. The latter depends on the 
background and kinematical factors, and so we can only recover the centre of the resonance 
peak, which is the energy position of the resonance, and its width, defined as the energy 
distance between the points of half maximum of the distribution. However it is desirable to 
extract naturally the above mentioned quantities, as some kind of spectral information. This is 
done in absolute degree by the Lorentzian distribution, based on the Breit Wigner 
approximation,[4]. Breit and Wigner put the origins of the theory of quantum resonances by 
studying the behavior of unstable particles. They postulated that if an ustable particle at energy 
Eo decays according to the exponential decay law then the energy density should be 
approximately distributed according to the Breit-Wigner distribution which is Lorentzian line 
shape. This was done in the mathematical content of a scattering experiment which is captured 
by the scattering matrix and expressions derived from it. One of them, the scattering phase, 
measures the averaged phase shift which a wave experiences while passing through the 
scatterer, and according to the Breit-Wigner theory, should have an expression similar to the 
Lorentzian distribution.   The Lorentzian spectral distribution is mathematically given by the 
following expression  

2 2
1 / 2( )  

/ 4r

f E
E E

                                                     (2) 

where r oE E  is the energy position of the resonance and  is the width. In this formalism 
Eo corresponds to the energy of the unperturbed state in which the system is initially prepared at 
t=0 and  is the energy shift due to interaction with the continuum. It is easy to see that the 
Lorenzian distribution is the Fourier transform of the exponential factor of the form / 2riE t te  , 
where we have used the atomic system of units 1,with contributions from both the negative 
and positive time. Indeed we obtain for E   
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/ 2

2 2

1 1 1 1 1( )  +
2 2 / 2 2 / 2
1 / 2           

/ 4

riE t t iEt

r r

r

f E dte e
i E E i E E

E E

                     

(3) 
We recognize two isolated poles at / 2rE E i , that dominate the two pieces of the analytic 

Fourier transform. The one piece varies as / 2te  for positive time and zero for negative time, 
while the other piece varies as / 2te   for negative time and zero for positive time. However 
neither piece corresponds to a compact autonomous state, since the state appears to be either 
created at t=0, or destroyed at t=0.  

     In classical mechanics the Lorentz line shape arises in the problem of a harmonically driven, 
harmonic oscillator with friction. The differential equation describing its motion is the following 

2 i t
o

fx x x e
m

                                                      (4) 

where  stands for the damping constant,  is the frequency of the unperturbed problem, f is 
the amplitude of the force, m is the mass of the system, and  is the driving frequency. It is to 
be understood that we take in account only the real part of the right-hand side. It is easy to see 
that a particular solution of the above equation has the form 

      2 2

/( ) i t

o

f mx t e
i

                                                (5) 

It is then interesting to calculate the two point correlation function coming as 
*

*
2 2 2 2

1 / /(0) ( )
2

i t

o o

f m f mx x t d e
i i

                     (6) 

The correlation function may be evaluated by complex contour integration yielding 

for positive and negative times, 
2 / 2 / 2

*
2 / 2 / 2

   0
2 2 2 2

(0) ( )

   0
2 2 2 2

t i t t i t

t i t t i t

f e e e e for t
m i i

x x t
f e e e e for t
m i i

                                 (7) 

or      

2 / 2 / 2

2 2 2 2

*

2 / 2 / 2

2 2 2 2

2 cos sin     0
4 4

(0) ( )
2 sin     0

4 4

t t

t t

f e et t for t
m

x x t
f e ecos t t for t
m

                    (8) 
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where we have defined the frequency 2 2 / 4 . If the approximation 

  is used then the above formulae take the much simpler form  

 
2 / 2

*
2(0) ( ) cos

2

tf ex x t t
m

                                               (9) 

We see that the temporal behavior of the correlation function is exponentially damped for both 
positive and negative time and thus directly related to the Lorentzian spectral distribution as we 
have seen earlier. 

We can attack to the problem in a different way. Let us write 2 2

/ i

o

f m e
i

  and find 

22 2 2 2

1( , )
o

f
m

   and 2 2tan
o

. In this way a particular integral of 

equation (4) is given by ( )( ) i tx t e .  The general solution of (4) with zero on the right �hand 
side is given by  

 / 2 / 2 / 2( ) cos( )t i t t i t tx t ce e de e ae t                 (10) 

In this way the solution of (4) is the sum 

 / 2( ) cos( ) ( , )cos( )tx t ae t t                       (11) 

Since the first term decreases exponentially with time, after a sufficient time only the second 
term survives. In fact the first term describes the transient behavior of the system. In contrast 
with a resonance without damping, the amplitude of oscillation, quantity ( , ) , depends on 

the frequency of the driving force, and acquires its maximum value when 2 2 / 2   . 
However this maximum is not infinite as for the case of the resonance without friction. If the 
damping constant is small enough then the range of resonance is very close to . Let us again 
assume that , and write  , with  very small. We will then find that  

 
2 2

1( , )
2 / 4o

f
m

                                               (12) 

During the oscillation the system continuously absorbs energy from the source of the external 
force, which in turn dissipates to the environment. The mean amount of energy absorbed per 
unit time is given as twice the mean value of the dissipative function, [33]. The latter is in 
generally a quadratic function of the ix  for a system with many degrees of freedom, and in our 

case is given by 21
2

F mx . It is easy to see that 
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2
2 2 2 2

2 2 2

2

2 2

1 1 1( , )sin ( )
2 4 4 / 4

/ 4
4 / 4

o

fF m t F m
m

fF
m

                         (13) 

Clearly we have reached to the Lorentzian line shape for the energy absorption, and this kind of 
dependence is called dispersion-type frequency dependence of the absorption, [32]. Thus, 
classical and quantum physics include phenomena that they are supported by the Lorentzian 
line shape distribution. 

 
3. DEVIATIONS FROM EXPONENTIAL DECAY LAW IN THE LIMIT OF SHORT AND 
LONG TIMES. 
In the previous section we used the correlation function discussing resonances in classical 
mechanics. The quantum analogous of the two point correlation function is the survival 
amplitude, defined as  

( ) ( )iHta t e t                                                    (14)                      

Here o  represents the initial state of the system, meaning the state in which it has been 
prepared at 0t  and H is the system�s Hamiltonian. The latter is assumed to be exactly known 
and usually corresponding to the unperturbed problem where no interaction to the continuum is 
possible. It can be described by a localized wave packet whose energy oE  is inside the 

continuous spectrum. In this way ( )t  represents the time evolution of the initial state at 

arbitrary times. We can now insert the unit operator �I constructed by the complete set of states 
of the Hamiltonian 

 dE E E                                                                                        (15) 

which obviously satisfy the Schrödinger equation H E E E  , and get  

              
2

( ) e ( ) e

( ) e e

O O

O

iHt iHta t a t dE E E

iEt iEta t dE E E dE E
                             (16) 

 
where again we use the atomic system of units where 1. The last term of the above 
equation defines the spectral distribution in terms of the Hamiltonian states and the initial state 

as well, through the   
2

( )E E . It demonstrates the physical meaning of the spectral 

distribution as the weight function for contribution of each of the energy states of the 
Hamiltonian to the construction of the survival amplitude. In other words the following quantity 

( )
E dE

E

d                                                                                            (17) 

is the probability that the energy of the state lies in the interval [E,E+dE]. It is clear from (16) that 
the Fourier transform of the spectral distribution is equal to the survival amplitude.The survival 
probability is given by  
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2 2( ) ( ) ( )oP t t a t                                                                   (18) 

and must satisfy the following two conditions: (0) 1P , and ( ) 0P , due to preparation and 
non stationarity respectively. In order to compute the survival amplitude ( )a t ,we must 
know ( )t , which is the solution of the time dependent Schrödinger equation. This is not trivial 
at all since it demands the knowledge of all of the interactions in a generally complicated 
problem. Alternatively we can assume a specific form for the spectral distribution of the system, 
based on certain properties and conditions that have to be fulfilled, and then calculate the 
survival amplitude through Fourier or Laplace transforms, [7-10,13], (and references therein). 
Among the various types of spectral distributions the Lorentzian, although still an approxima-tion 
is rather the most popular since not only occurs in many branches of physics and different 
phenomena: deexcitation of atomic levels, alpha decay, resonant scattering, but also because it 
constitutes the generator of many other types of distributions or extensions thereof, [13,35-43]. 
More than this it has been seen that the Lorentzian spectral distribution can be directly related to 
Gamow vectors and exponential time evolution without violating causality, [35]. However an 
issue to be discussed has to do with the violation of its spectrum boundedness. In other words 
the Lorentzian spectral distribution violates the spectral condition to obtain a strict exponential 
decay. This happens because we admit states with arbitrarily large negative energies. This 
violation would also violate the second law of thermodynamics, [34] and the uncertainty principle 
as well.  For the first case we can imagine suitable interactions to take arbitrarily large amounts 
of energy from the system. The first law of thermodynamics can be satisfied and yet the 
available energy from the system is arbitrarily large. This must not be possible and so the 
unbounded spectrum by itself should not occur. For the second case we have to think that the 
infinite negative potential energy, would confine a particle in a very small area, for example an 
electron near the nucleus. In this way both x and p tend to zero which is a contradiction to the 
uncertainty principle. So, since the distribution should actually be truncated to positive E, 
corresponding to the threshold of the continuum spectrum, we equivalently set ( ) 0E  for 

0E . The ( )E  is called Truncated Lorentzian Distribution TLD, and its general form is the:      

                  2 2
( ) / 2( )  for 0
( ) ( ) / 4

               0 for 0

TLD

o

EE N E
E E E E
E

,                                            (19) 

where ( )E is the energy shift, ( )E  is the energy width of the resonance and N is a 
normalization factor different from 1/  since the distribution is now semibounded. For the same 
reason both the energy shift and the energy width are now energy dependent. The distribution 

( ) TLD E is a real function of energy and must satisfy the following condition of normalization, 
since probability is conserved: 

                                                   
0

( )  1TLD E dE                                                                  (20) 

which is equivalent to write *(0) (0) 1a a . This equation determines the value of quantity N 
and gives: 
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                                       1 -1
( ), ( )  ( )  tan ( )  N E E E E                                   (21) 

where quantity ( )E  represents an angle close but not equal to / 2  as a consequence of the 
energy dependence of both quantities ( )E and ( )E , analytically shown in [13]. In fact the 
energy dependence of the angle  makes the Lorentzian a better approximation. It is quite 
obvious from eq. (19) that the truncated Lorentzian distribution reveals two complex energy 
poles that come as the complex conjugates of each other: 

                           *( ) ( ) / 2   ,   ( ) ( ) / 2 r rz E i E z E i E                                             (22) 

However since the propagator function must properly describe the irreversible time evolution of 
the system, only the *z  pole should be chosen in order to give the correct exponential decay 
law of the form /( )  tP t e . Having this in mind some-one can propose instead a complex 
function of energy that intrinsically carries irreversibility and causality, and arises from 

( ) LD E by keeping only the *z  pole, meaning the Complex Lorentzian Distribution CLD: 

                                  
( )

( ) 2 ( ) ( ) / 2r

iCLD N E
E

E E E i E
   

     
                              (23) 

leading to a time evolution of the form 
(1/ 2)

( ) ( )
iE t trt t e o .  

The Paley-Wiener theorem [44] states that if the spectrum is bounded from below, then the 
survival amplitude and hence the survival probability decreases to zero as time passes less 
rapidly than any exponential function, and thus deviates from expo-nential decay. In fact we can 
show that deviations from exponential decay in the limit of long times, arise from clearly 
kinematical arguments. As we have already pointed, the spectral distribution depends on the 
background and kinematical factors. For example we can separate the phase space factor (E) 
in the spectral distribution and write the latter as 

                                                           ( ) ( ) ( )f                                                        (24) 

where the form factor f( ) expresses the energy distribution of the decay products, to whom the 
unstable state is finally distributed. As time grows the wave packet of the initial state spreads so 
that the decay products separate sufficiently far to be outside each other�s influence, and the 
distribution becomes clearly kinematic. This means that the form factor is smoothly varying after 
some large but finite time, since the corresponding interactions between the decay products 
become negligible. The remaining phase space factor has the form 

                                               3 24
( ) 4

3
d dkE k k

dEdE
                                               (25) 

where k is the wave number associated to the remaining kinetic energy via the 
2

2
kE
m

  . In this 

way we have 

                         3 / 2( ) 8 4 2
2
mE m E m E
E

                                                           (26) 
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Thus, the survival amplitude for large times behaves as 

                    

3 / 2

0 0 0

3 / 2 3 / 2

0

( ) ( ) ( ) 4 2

1 1 4 2

iEt iEt iEt

iz

a t dEe E dEe E m dEe E

m dze z t
t t

:
                      (27) 

where we have reached the same result as in [13] but in a different way.  

      We may now examine the behavior of the survival amplitude, in the limit of very short times. 
The spectrum of the Hamiltonian is semibounded and in addition we assume that the 
expectation value of the energy at t=0 is finite. The expectation value of the energy may be 
taken as �  or alternatively via the use of the spectral distribution, 

                                                            
0

( )E d                                                            (28) 

It is interesting to notice that the time derivative of the survival amplitude at t=0 is connected to 
the expectation value of the energy since it is true that 

                      
0 0

( ) ( ) ( ) (0) ( )iEtt dE iE e E E E dE E& &                                    (29) 

 Writing down the survival probability we can actually write 

                              * * *( )( ) ( ) ( ) ( ) ( ) ( ) ( )dP tP t t t t t t t
dt

& &                                  (30) 

The time derivative of the survival amplitude is continuous since we have 

 
0 0

( ) ( ) ( ) ( )iEtt dE iE e E E E dE&  and E is finite. It is easy to see that quantity 

(0)& is a purely imaginary quantity equal to 

                                                                 (0) i E&                                                               (31) 

If this is the case then the time derivate of the survival probability at t=0, is equal to 

* *( ) (0) (0) (0) (0) (0) 1 1 (0) 0
0

dP t
tdt

& & & &                       (32) 

The last result shows that the decay can not be exponential at very short times since then we 

should actually have, 
( )

0
dP t

tdt
. So at sufficient small time, the non decay probability 

falls off less rapidly than would be expected on the basis of the exponential decay law. 

      For each case of distribution, TLD or CLD, it was shown in [13] that the time evolution of an 
unstable system is constituted by two parts: the exponential decay part and the non exponential 
decay part. The exponential decay parts were exactly the same for the two distributions, while 
the non exponential decay parts had substantial in between differences. These differences had 



ISSN: 1791-4469 Copyright © 2012 Hellenic Naval Academy  

201 

mainly to do with the form of the non exponential survival amplitude. The real spectral 
distribution gave the following amplitude:   

                            
-1tan

( , ) , exp[ tan )]TLD N i d   (                                     (33) 

while the complex distribution gave: 

                         
-1tan( , )( , )     d exp{ [ (tan ) ]} /cos2

CLD NI i                      (34) 

In the above relations we have used the following dimensionless quantities, / 2 dt  where 

d  is the mean lifetime of the resonant state and 2 /rE  as twice the ratio of the energy 
position to the decay width of the resonant state. In addition the non exponential amplitudes 
satisfy a different differential equation. Both of them come as a classical Langevin type of 
equation, [45], with quantity ( , ) ( tan )                                                                     (35) 

corresponding to the frequency of the rapidly oscillating stochastic terms, and carrying 
information from the limits of the spectrum, [13,46].  

 
4. CORRELATION BETWEEN EXPONENTIAL AND NON EXPONENTIAL 

AMPLITUDE. 
      The exponential part of the decay is totally determined by the width function ( )E since the 
latter describes the rate of exponential decay of the system�s survival probability. This quantity is 
produced through the interaction of the system with the continuum, and there exist many 
different methods for its calculation. For example it can be constructed through Fermi�s golden 
rule, [47], where it is produced from the contribution of the matrix elements of the interaction 
potential, or alternatively through path integral methods, [48], and contributions of the classical 
action inside the potential barrier. The energy shift ( )E is also produced by the interaction terms 
and according to [48] is given as a function of the derivative of the classical action inside the 
potential barrier with respect to energy. It is clear from the above that both quantities ( )E and 

( )E Er  are similarly constructed and depend on the type and strength of the interaction with the 
continuum, and so does their ratio .    

      Following Dirac�s formalism we can define a vector whose energy wave function  is a 
Lorentzian distribution, meaning the 

                       
1

2 / 2r

dE E E dE E i
E E i

                        (36)

If we choose the boundaries of integration to be E ,the length of this vector is given by                      

2 2

1 1
2 4

G G

r

dE E E dE
E E

     (37) 

However if we choose the boundaries according to the rules of standard quantum mechanics, 
0 E , we get 
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2 2

0 0

3
1

2

1
2 4

1 1 11 ..
1 3

G G

r

dE E E dE
E E

dz
z

                      (38) 

The first length equals 1, and corresponds to the pure exponential decay law as we have 
already seen in eq. (3). The second length is less than 1, and corresponds to the mixed 
propagation, exponential and non exponential, given as a function of the ratio . It was shown in 
[13] and can be established once more from the above relations, that in the limit where  tends 
to infinity the exponential decay becomes the only contribution in the system�s time evolution, 
(the results of equations 37 and 38 coincide). On the contrary when  takes values close to 1 
the exponential decay part becomes much less significant. For intermediate values of the ratio  
we get an interplay between exponential and non exponential decay and this is reflected on the 
values of the length of eq. (38). It is easily seen that equation (38) describes an increasing 
function of . So there is an one by one correspondence between the strength of the 
exponential decay and the values of the ratio . In this way the correlation between the 
exponential and the non exponential decay generates translations in the  parameter and we 
may think of it as the generator of the one dimensional space introduced by . Inside this 
generalized space, the non exponential part of the decay will classically flow, while the space 
points may act as secondary either destructive or constructive sources. The study of this kind of 
behaviour is expected to extract information about the correlation between the two types of 
evolution.  

      The continuity equation expresses the fact that inside a finite volume �mass� or �charge� is 
conserved in the absence of external sources and this makes the equation homogeneous.  As a 
first step in the mathematical analysis that follows a generalized density and current must be 
properly introduced. Classical intuition is related to probabilities which are the directly observed 
quantities. But probabilities do not propagate. Propagation is for the amplitude. Thinking so, the 
generalized density is defined by the non exponential amplitude itself, meaning 

 ( , ) or ( , ) TLD CLD and depends on both space, (meaning 2 /rE ) and time, 
(meaning / 2 dt ). The corresponding current comes then naturally as 

                                                 
( , )   J                                                                     (39) 

The continuity equation comes as [49], 

                                                          0div J
t

                                                                (40)  

and takes the following form for the case of the non exponential amplitudes:  

                   ( , ) ( , )   0                                                                       (41) 

In the following paragraphs the specific form of eq. (41) is investigated for the cases of real and 
complex spectral distributions that were previously mentioned. It is easy to see after a little piece 
of algebra, that the conservation law takes the following form: 
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-1tan

, ) ( , )  sech(ln )(   ( )  [ 1]
4 ( , )

( , )    (   0.5) (1  0.5 ) tan exp[ (tan )] 

TLD or CLD TLD

d

N

iN or or i i d

                                     

(42)     

It is obvious that the continuity equation is inhomogeneous since an additional term in the right 
hand of the equation appears and which we define as the exponential source term, (est). 
However the lack of homogeneity has important consequences in terms of physics. Due to the 
first term of the left hand side of eq. (42), the est corresponds to a first time derivative of an 
amplitude and can be cancelled if a suitable measuring perturbation is applied. In the limit of 
short times this cancellation would make the non exponential decay uncorrelated to the 
exponential one, and consequently observable. So the question is whether these terms can be 
cancelled at this regime of time. This can be achieved only if the est takes finite values which in 
turn ensures that we can actually follow the system through its evolution. We are interested in 
the limit of short times not only because it is the regime of time where the non exponential decay 
becomes important but also because we may want to discuss some interesting and peculiar 
phenomena such as the quantum Zeno effect.    

     The est term comes as a function of quantities  and , and of the resonance�s lifetime d 
and corresponds to the correlation between exponential and non-exponential decay during the 
system�s time evolution. The first thing to notice is the fact that the continuity equation becomes 
homogeneous when the following condition is satisfied: 

     , / 24 ( ) sech(ln )o oN                                               (43) 
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FIGURE 1. The variation of quantity C( ) with . Its Lorentzian shape shows a maximum at =1.25, and 

approaches -1 for both 0, . 
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For a given system, the different possible values of quantity  correspond to different kind and 
strength of interactions with the continuum.By solving numerically the  

transcendental equation (43) we find two solutions namely 1 0.67 and 2 2.29 . These answer 
directly to the question of how close to unit must ratio  be in order for the non-exponential 
decay to dominate the evolution. On the other hand and since  also appears in the limit of 
integration in the right term of (42), as  the flow disappears and the same of course 
happens with the correlation between the two kinds of evolution. In fact we can draw in Figure 1 
that follows quantity C( ) as a function of  defined by 

  
 sech(ln )C( )=[ 1]

4 ( , / 2)N
                                             (44) 

For both regions of 0  and ,C( ) approaches -1. It is interesting to notice that C( ) 
has itself a Lorentzian-like shape. When condition (43) is satisfied, the non exponential part of 
the decay is conserved and the interaction between the two different types of propagation is 
negligible. 

      However we are interested for other values of the ratio  as well. For this we exa-mine in 
more details the behavior of the est term, in the lines that follow. Concernig the real spectral 
distribution, we first treat the case where the interaction with the continuum, through a potential 
barrier for example, changes both ( ) and ( )in a way that the following relation holds 

( ) tan ( )E E                                                  (45) 

This would correspond to the situation where the complex energy shift is strongly energy 
dependent. This makes ( ) also strongly energy dependent and reflects on the magnitude of 
its derivative. We can then approximate est R and after a little piece of  algebra find that 

2
2

( , )  sech(ln ) 1 tan
1 4 ( , )

R
d
dE

Nest i
N

                      (46) 

It is interesting to notice that there is no time dependence of the est R, to be discussed in the 
next section. For all the other types of smooth dependent complex energy shifts we can 
approximate est  R as follows 

1 1 1
0

2 1 1
0

2 1 1
0
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n n n
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t i i

n
i t

t i i

n
t i i

                (47) 

where the above formula stands for times beyond the short time regime. In the region of very 
short times it is easy to approximate est R according to the following formula 
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d
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t

                            (48) 

In the case of the complex spectral distribution a different type of  est C is revealed, where c 
stands for the complex distribution. It is not difficult to find the following operator that connects 
the est for the two different types of spectral distribution 

   
1 1
2

C R RC Rest est i est                                                (49) 

      We may now focus on the short time regime and discuss the observability of the non 
exponential part of the decay. The case of long times can easily be handled, at least in a 
theoretical base, since the polynomial form  of the non exponential propagation always 
dominates the exponential part after a certain number of lifetimes [13]. In the latter case the only 
problem to be solved experimentally has mostly to do with the very small magnitude of the 
propagation at these limits of time, while in the former case there exist other difficulties as well, 
related to the quantum nature of the resonant states, and the tunneling process, [13,46,48].  The 
angle  that enters the calculations as the second limit of integration in the propagator integral 
equations, carries information from the limits of the energy spectrum at very short times and 
contributes significantly to the non exponential propagation. An earlier study of these 
contributions, [46], concerned the question of observability �of early time departures from 
Fermi�s golden rule� where the issue of the non exponential propagation at 0t  was discussed 
at length.  

      As we have already said est terms correspond to the first time derivative of a quantity with 
the same dimensions as those of the amplitude meaning a matrix element of the form 

( )o ot , where ( )t  stands for the perturbation effected by a measurement, and o  

stands for the initial state of the system at t=0 with energy EO as has been already mentioned. 
The evolution of the system is described by 

( ) ( )i t H t
t

                                                    (50) 

where H  is the Hamiltonian operator and (0) O . We assume that the measurement 
process at the limit of very short times permits interaction with the continuum. For example we 
may have a time dependent potential barrier that alters both the classical allowed and classical 
forbidden region of motion, and eventually quantities  and . This also changes the state of the 

system from O  to ( )t , and makes quantity ( ) ( ) ( )o o ot t a t  the survival 

amplitude. It follows directly from (50) that ( ) ( )oi t H t  and for t=0 we have  

(0) Oo oi a H E                                              (51) 
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The above relation expresses the fact that in the limit of very short times quantity (0)  must be 
purely imaginary.  This is true for the real Lorentzian distribution, as can be easily proved from 
(48) where we get 

1
11  sech(ln ) cos tan(0) ( ) tan ln

4 cosd
a i N                     (52) 

This is not true however for the complex distribution due to relation (49) which makes (0) a 
complex and not purely imaginary quantity. This means that the complex spectral distribution 
does not provide a complete theory for the observability of the non exponential decay in the limit 
of very short times. Let us focus on the purely imaginary character of quantity (0)a . Following 

the steps that lead to exponential decay, we assume that the system is prepared in state at 

a time t and that the probability of decay in a time interval is dt . Thus if the probability that the 
system was in state is P(t)   then the probability that the system will be in state   at a 

time t+dt will be ( ) ( )(1 )P t dt P t dt   and this of course leads to exponential decay. If we 
now work with the survival amplitude we will take  

             
2 2

2 2 2 ( ) ( )( ) ( ) ( ) ( ) ) ( ) 1 ( ) 1
( ) ( )
a t a tP t dt a t dt a t a t dt a t dt P t dt
a t a t

            (53) 

Since (0) 1a and (0)a i  we have for t=0, 2 2( ) 1P dt dt . The latter is greater than unit 
however this inconsistency is removed if we take in account all the remaining derivatives of the 
amplitude in the expansion of ( )a t dt . The case of exponential decay gives ( ) 1P dt dt . If 
we look at ( )P dt  as a polynomial of dt we note the absence of dt in the amplitude method. This 
is due to our mistake assumption in constructing the exponential dependence,that the survival 
probability changes entirely due to transitions out of the initial state where we have not taken in 
account transitions back to the initial state. The latter would cancel the dt term. 

On the other hand eq. (52) together with (31) serve as a tool for the calculation of the angle (E) 
that enters the Lorentzian distribution and takes in account the energy dependence of the 
complex energy shift. Indeed we get the transcendental equation 

                                 1 1tan ln cos tan ln cos
( )

dE
C

                                 (54) 

We can now discuss the finiteness of the time derivative of the survival amplitude. In fact we can 
divide the physical systems in two categories: these where the expecta-tion value of the energy 
is finite and these where it tends to infinite. Concerning the  first case, we have already shown 
that when the expectation value of the energy is finite then the decay rate approaches zero 
as 0t .The time derivative of the amplitude expresses the rate with which the measuring 
perturbation should change in time in order for the non exponential decay to be observed. 
Combining the above we are left with the conclusion that in this case we can follow the system 
at sufficie-ntly small time and observe deviations from exponential propagation. But deviations 
from exponential decay are equivalent to say that at t=0 the decay rate tends to zero and not 
equal to � . Thus, if the unstable system is monitored for its existence at sufficiently small 
intervals of time, it would appear to be longer lived than if it were monitored at intermediate 
intervals, where the decay law is exponential. These are the conditions for the quantum Zeno�s 



ISSN: 1791-4469 Copyright © 2012 Hellenic Naval Academy  

207 

paradox to appear, which states that in the limit of continuous monitoring the system does not 
decay at all. The quantum Zeno effect was first understood by von Neumann, [50]. While 
analyzing the thermodyna-mic features of quantum ensembles von Neumann proved that any 
given state   of a quantum mechanical system can be �steered� into other state  of the 
same Hilbert space, by performing a series of very frequent measurements. If   and  
coincide, the evolution is frozen, meaning that a quantum Zeno effect takes place. The classi-cal 
allusion to the sophist philosopher Zeno of Elea is due to Misra and Sudarshan [30], who were 
also the first to provide a consistent and rigorous mathematical framework. We can easily see 
that if the system is initially prepared in the unstable state o and is monitored on its survival 
at the instants 0, t/n, 2t/n,�.,(n-1)t/n, t  the probability for its survival is given by P(t/n)n . In 
addition since the survival amplitude is differentiable and (0) 0P& , we can actually write for 
n .  

( / ) (0) (0)( / ) 1
nnP t n P P t n&                                           (55) 

independent of t. It is thus evident that the survival probability under discrete but frequent 
monitoring will be close to 1 provided that t/n is sufficiently small to observe departures from 
exponential decay law. The quantum Zeno effect is a direct consequence of general features of 
the Schrödinger equation that yield quadratic behavior of the survival probability at short times. 
Let H be the total Hamiltonian of a quantum system and  its initial state. The short time 
expansion of the survival probability yields a quadratic behavior of the form  

22 2 2 2( ) 1 /       where            1/z z O O O OP t t H H:                         (56) 

and z  is the Zeno time, [51]. It is easy to see that 2 2( / ) exp / 1 (  n )n
zP t n t n as . 

If the Hamiltonian is divided into the unperturbed HO and the interaction part Hint , the Zeno time 
reads 

2 2
int1/ (0)z O O tH est&                                                (57) 

which in accordance to eq. (48) gives 

                                 

2
2

1
1 2

1  sech(ln )1/ ( , ) x
2 4

cos tantan 1 2 ln tan
cos

z
d

N
                              (58) 

In this way we can estimate the Zeno time as  

             
1/ 21

1 22 2 cos tantan 1 2 ln tan
cossech(ln ) 4 ( , )

d
z N

(59) 

Since the finiteness of the time derivative of the survival amplitude at t=0 turns to be very 
important for the process of measurement, we may want to investigate its limits of accuracy as 
these are determined from eq. (52). Due to the structure of the C( ) coefficient (0)a  is expected 
to have at least two roots, meaning the values of 1 and 2 that were previously revealed. This is 
important because these roots correspond to regions of quantity  where (0)a remains finite. 
We remind ourselves that these regions include resonant states where the non exponential 
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decay dominates over the exponential, and according to the above quantum Zeno�s paradox 
may appear. On the other hand eq. (52) describes the rate with which the measurement matrix 
element should change in the limit of very short times in order for the non exponential decay to 
be observed, as a function of the angle ( ). When the latter is close to /2 then the complex 
energy shift does not significantly depend on the energy and the spectral distribution is almost 
Lorentzian line shape. For this reason we examine (0)a  for different values of ( ) close and 
distant from /2, from  /1.985 to  /1.500. The figures that follow describe (0)a with , for the 
previously mentioned values of the angle , covering each time two different regions of values of 
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FIGURE 2. The variation of (0)a  with  for an angle  = /1.985. a) For small values of  we have the 
two minima generated by C( ), b)  a third minimum appears for a value of   equal to 80x103. For greater 
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FIGURE 3. The variation of (0)a  with  for an angle  = /1.9. a) For small values of  we have three 

minima, b) a fourth minimum appears for a value of   equal to 103. For greater values of , (0)a  
approaches . 
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The existence of minima in the above figures, ensures the finiteness of the time derivative of the 
survival amplitude, and enables the observation of the non exponential decay and generally the 
delay of propagation out of the initial state. We can see that when the angle  is close to /2 
minima appear not only due to the structure of C( ) for small values of , but for other values of 

 as well. This corresponds to the case where the Lorentzian line shape distribution provides a 
good approximation for the description of the unstable state. When  further changes, there is 
no more space for other minima and (0)a  approaches infinite as   grows. Thus the rate with 
which the measuring process varies tends to infinite even if the matrix element of the process is 
itself finite. In this way the variation of the measuring perturbation is discontinuous and we can 
not follow the system in this limit although the measurement might be in principle realizable.   
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FIGURE 4. The variation of (0)a  with  for an angle  = /1.8. a) For small values of  we have tho 
minima, since the third is getting absorbed b)  a third minimum appears for a value of  equal to 180. For 

greater values of , (0)a  approaches . 
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FIGURE 5. The variation of (0)a  with  for an angle  = /1.5. a) For small values of  we have again 

the two minima generated by C( ), b)  no other minimum appears for greater va-lues of   since the 
previous corresponding minimum is absorbed, and (0)a linearly approaches . 

      When we treat the case of a strongly energy dependent energy shift, we can see from (46) 
that the rate with which the measuring perturbation changes, remains very small in magnitude 
for all the moments in time and also purely imaginary. The small magnitude has to do with the 
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fact that in this case the non exponential decay domi-nates the propagation in the limits of very 
short times, due to the strong contribution of the angle ( ), [13,46], and so it is possible for the 
detector to follow the system and observe it. We have already seen that the est acquires a 
purely imaginary struc-ture for two reasons: ( )t  is the part of the Hamiltonian that causes the 
measuring perturbation of the system at t=0 and in addition we can assume that the system can 
indeed be prepared in the state o at that instant. Since the ( )est a t  conserves this 
imaginary structure at later times also, it is clear that this is equivalent to say that we can 
repeatedly reset the system to its initial state. In this way we can in principle observe the non 
exponential decay and at the same time prevent decay by resetting the system back to O   
through repetitive observations, with a rate of change of the measuring process given by (46). 
Thinking so, (46) could serve as a definition for the frequency of observation needed, where for 
a wide class of systems, tests of nonde-cay repeated at arbitrarily small times would prevent the 
decay of an unstable state. Again this is not true for the complex spectral distribution for the 
same reasons explained in the previous paragraph.  

      Finally we may discuss the limit of very long times. As we have already mentioned the 
Paley-Wiener theorem [44], states that if the spectrum of the Hamiltonian is bounded below, so 
that ( ) 0 for 0E E , then the survival amplitude decreases to 0 as t  less rapidly than 
any exponential function. This is essentially Khalfin�s argument [8] proving the necessity of 
deviation from the exponential decay law at large time. Looking at eq. (47) it is easy to 
understand that all stochastic terms containing exp ( , )i t produce cancellations and so the 
dominant term for n=0 takes the following form for the two distributions  

,
2

( ) ( )
(1 )[( ,2) 1]

1R C
t

N C
i i

diEST
t

                                           (56) 

Both terms rapidly go to zero as time grows, which makes it quite easy for the non exponential 
decay to be observed in this region of time. However and as we have already mentioned at the 
beginning of this section, a serious problem to be solved experimentally has mostly to do with 
the very small magnitude of the propagation at this region of time.   

 

5. CONCLUDING REMARKS     
      In this work we discussed the origin and some of the properties of the deviations from 
exponential decay law, related to quantum resonances that can be described by Lorentzian line 
shape distributions. For this reason we first demonstrated the appearance of the Lorentzian 
distribution in both classical and quantum theory of resonances, as the mean amount of energy 
absorbed per unit time and the scattering phase respectively. In our study we distinguished two 
types of distributions both generated by the Lorentzian, namely the real truncated Lorentzian 
which is the semibounded Lorentzian, and the complex Lorentzian distribution which emerges 
when keeping only the appropriate t>0 energy pole of the Lorentzian.  

      Following very general principles arising from kinematical effects, we showed that for large 
times and due to the fact that the decay products to whom the initial unstable state is finally 
distributed become uncorrelated, the kinematical factors dominate the distribution, giving a non 
exponential time dependence of the form t-3/2. In the limit of very short times it is important to 
notice that the magnitude of the survival amplitude approaches the energy expectation value 
and the amplitude itself is purely imaginary. Then both the semiboundness of the spectrum and 
the finiteness of the expectation value of the energy, ensure that the time derivative of the 
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survival probability approaches zero. Thus, at sufficient small time, the non decay probability 
falls off less rapidly than would be expected on the basis of the exponential decay law. 

      We constructed an analogous to the continuity equation in order to investigate the 
correlation between exponential and non exponential decay. We defined a spatial variable , as 
twice the ratio of the energy position to the width function of the reso-nance and showed that 
there is an one by one correspondence between the strength of the exponential decay and this 
ratio. We can achieve the homogeneity of this equ-ation by applying a suitable measuring 
perturbation cancelling its second part, where the latter is defined as the exponential source 
term, est. The est expresses the corre-lation between exponential and non exponential decay 
and comes as the first time derivative of the previously mentioned measuring perturbation. For 
both types of distributions we found the same values of  close to 1 that zero the est, correspo-
nding to the situation where the non exponential decay dominates the evolution. In the limit of 
short times we proved that the complex spectral distribution does not provide a complete theory 
for the observability of the non exponential decay, since it does not construct a purely imaginary 
survival amplitude as it should. Concerning the real distribution in the above limit, we produced 
the transcendental eq. (54) for the angle  that describes the energy dependence of the 
complex energy shift as a function of the expectation value of the energy of the initial state. We 
also produced eq. (59) that gives the Zeno time as a function of the ratio . We explored the 
finite-ness of the est term for other values of  as well, beyond those close to 1, since this 
permits someone to follow the system and observe the non exponential propagation, at least in 
principle. We showed that the finiteness is achieved only for specific valu-es of the angle  close 

 /2. For the case of a strongly energy dependent energy shift we found that the rate with 
which the measuring perturbation should change, is very small in magnitude for all the moments 
in time and also purely imaginary, conce-rning the real spectral distribution. The first 
characteristic was connected to the strong contribution of the non exponential decay while the 
second was connected to the potentiality to repeatedly reset the system to its initial state. In this 
way equation (46) provides information for the frequency needed for the repetition of the 
observa-tions. However this is not true for the complex spectral distribution, for the same 
reasons appeared in the short time regime. 

      In the limit of very long times both distributions produce ests whose dominant terms, 
meaning those beyond the stochastic terms that  cancel each other, rapidly go to zero with time 
as 1/t2 . This fact makes it quite easy for the non exponential decay to be observed. However 
the difficulty in this case has mostly to do with the very small magnitude of the propagation at 
this region of time.  
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