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Abstract. It is now widely accepted that the Maxwell equations of Electrodynamics 

constitute a self-consistent set of four independent partial differential equations.  

According to a certain school of thought, however, half of these equations – namely, 

those expressing the two Gauss’ laws for the electric and the magnetic field – are  

redundant since they can be “derived” from the remaining two laws and the principle 

of conservation of charge. The status of the latter principle is thus elevated to a law of 

Nature more fundamental than, say, Coulomb’s law. In this note we examine this line 

of reasoning and we propose an approach according to which the Maxwell equations 

may be viewed as a Bäcklund transformation relating fields and sources. The 

conservation of charge and the electromagnetic wave equations then simply express 

the integrability conditions of this transformation.  

 

Keywords: Classical electrodynamics, Maxwell’s equations, Bäcklund transformations  

 

 

1.  Is Gauss’ law of Electrodynamics redundant? 
 

As we know, the Maxwell equations describe the behavior (that is, the laws of change 

in space and time) of the electromagnetic (e/m) field. This field is represented by the 

pair ( , )E B , where E  and B  are the electric and the magnetic field, respectively. The 

Maxwell equations additionally impose certain boundary conditions at the interface of 

two different media, while certain other physical demands are obvious (for example, 

the e/m field must vanish away from its localized “sources”, unless these sources emit 

e/m radiation).  

      The Maxwell equations are a system of four partial differential equations (PDEs) 

that is self-consistent, in the sense that these equations are compatible with one 

another. The self-consistency of the system also implies the satisfaction of two 

important conditions that are physically meaningful:  

 

 the equation of continuity, related to conservation of charge; and  

 the e/m wave equation in its various forms.  

 

We stress that these conditions are necessary but not sufficient for the validity of the 

Maxwell system. Thus, although every solution ( , )E B  of this system obeys a wave 
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equation separately for the electric and the magnetic field, an arbitrary pair of fields 

( , )E B , each field satisfying the corresponding wave equation, does not necessarily 

satisfy the Maxwell system itself. Also, the principle of conservation of charge cannot 

replace any one of Maxwell’s equations. These remarks are justified by the fact that 

the aforementioned two necessary conditions are derived by differentiating the 

Maxwell system and, in this process, part of the information carried by this system is 

lost. [Recall, similarly, that cross-differentiation of the Cauchy-Riemann relations of 

complex analysis yields the Laplace equation (see Sec. 2) by which, however, we 

cannot recover the Cauchy-Riemann relations.]  

      The differential form of the Maxwell equations is  

 

        
0

0 0 0

( ) ( )

( ) 0 ( )

B
a E c E

t

E
b B d B J

t





  


    




    



            (1) 

 

where , J  are the charge and current densities, respectively (the “sources” of the 

e/m field). Both the fields and the sources are functions of the spacetime variables 

(x,y,z,t). Equations (1a) and (1b), which describe the div of the e/m field at any 

moment, constitute Gauss’ law for the electric and the magnetic field, respectively. In 

terms of physical content, (1a) expresses the Coulomb law of electricity, while (1b) 

rules out the possibility of existence of magnetic poles analogous to electric charges. 

Equation (1c) expresses the Faraday-Henry law (law of e/m induction) and Eq. (1d) 

expresses the Ampère-Maxwell law. Equations (1a) and (1d), which contain the 

sources of the e/m field, constitute the non-homogeneous Maxwell equations, while 

Eqs. (1b) and (1c) are the homogeneous equations of the system.  

      By taking the div of (1d) and by using (1a), we obtain the equation of continuity, 

which physically expresses the principle of conservation of charge (see, e.g., [1], Sec. 

9.6):  

 

        0J
t


   


                    (2) 

 

Although the charge and current densities on the right-hand sides of (1a) and (1d) are 

chosen freely and are considered known from the outset, relation (2) places a severe 

restriction on the associated functions. A different kind of differentiation of the 

Maxwell system (1), by taking the rot of (c) and (d), leads to separate wave equations 

(or modified wave equations, depending on the medium) for the electric and the 

magnetic field (see, e.g., [1], Sec. 10.4).  

      In most textbooks on electromagnetism (e.g., [2–6] and many more) the Maxwell 

equations (1) are treated as a consistent set of four independent PDEs. A number of 

authors, however, have doubted the independence of this system. Specifically, they 

argue that (1a) and (1b) – the equations for the div of the e/m field, expressing Gauss’ 

law for the corresponding fields – are redundant since they “may be derived” from 

(1c) and (1d) in combination with the equation of continuity (2). If this is true, 

Coulomb’s law – the most important experimental law of electricity – loses its status 

as an independent law and is reduced to a derivative theorem. The same can be said 

with regard to the non-existence of magnetic poles in Nature.  
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      As far as we know, the first who doubted the independent status of the two Gauss’ 

laws in electrodynamics was Julius Adams Stratton in his 1941 famous (and, 

admittedly, very attractive) book [7]. His reasoning may be described as follows:  

      By taking the div of (1c), the left-hand side vanishes identically while on the right-

hand side we may change the order of differentiation with respect to space and time 

variables. The result is:  

 

          0B
t


  


                 (3) 

 

On the other hand, by taking the div of (1d) and by using the equation of continuity 

(2), we find that  

 

        
0

0E
t





 
   

  
                        (4) 

 

And the line of argument continues as follows: According to (3) and (4), the 

quantities B  and ( 0/E    ) are constant in time at every point (x,y,z) of the 

region Ω of space that concerns us. If we now assume that there has been a period of 

time during which no e/m field existed in the region Ω, then, in that period,  

 

        0B      and    0/ 0E                     (5) 

 

identically. Later on, although an e/m field did appear in Ω, the left-hand sides in (5) 

continued to vanish everywhere within this region since, as we said above, those 

quantities are time constant at every point of Ω. Thus, by the equations for the rot of 

the e/m field and by the principle of conservation of charge – the status of which was 

elevated from derivative theorem to fundamental law of the theory – we derived Eqs. 

(5), which are precisely the first two Maxwell equations (1a) and (1b)!  

      According to this reasoning, the electromagnetic theory is not based on four 

independent Maxwell equations but rather on three independent equations only; 

namely, the Faraday-Henry law (1c), the Ampère–Maxwell law (1d), and the principle 

of conservation of charge (2).  

      What makes this view questionable is the assumption that, for every region Ω of 

space there exists some period of time during which the e/m field in Ω vanishes. This 

hypothesis is arbitrary and is not dictated by the theory itself. (It is likely that no such 

region exists in the Universe!) Therefore, the argument that led from relations (3) and 

(4) to relations (5) is not convincing since it was based on an arbitrary and, in a sense, 

artificial initial condition: that the e/m field is zero at some time t=0 and before.  

      Let us assume for the sake of argument, however, that there exists a region Ω 

within which the e/m field is zero for t < t0 and nonzero for t > t0 . The critical issue is 

what happens at t=t0 ; specifically, whether the functions expressing the e/m field are 

continuous at that moment. If they indeed are, the field starts from zero and gradually 

increases to nonzero values; thus, the line of reasoning that led from (3) and (4) to (5) 

is acceptable. There are physical situations, however, in which the appearance of an 

e/m field is so abrupt that it may be considered instantaneous. (For instance, the 

moment we connect the ends of a metal wire to a battery, an electric field suddenly 

appears in the interior of the wire and a magnetic field appears in the exterior. An 
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even more “dramatic” example is pair production in which a charged particle and the 

corresponding antiparticle are created simultaneously, thus an e/m field appears at that 

moment in the region.) In such cases the e/m field is non-continuous at t=t0 and its 

time derivative is not defined at this instant. Therefore, the line of reasoning that leads 

from (3) and (4) to (5) again collapses.  

      Note, finally, a circular reasoning in Stratton’s approach. It is assumed that, in a 

region Ω where no e/m field exists, the second of relations (5) is valid identically. 

This means that the vanishing of the electric field in Ω automatically implies the 

absence of electric charge in that region. This fact, however, follows from Gauss’ law 

(1a); thus it may not be used a priori as a tool for proving the law itself!  

      Regarding charge conservation, we mentioned earlier that Eq. (2) is derived from 

the two non-homogeneous Maxwell equations, namely, Gauss’ law (1a) for the 

electric field, and the Ampère–Maxwell law (1d). This means that the principle of 

conservation of charge is a necessary condition in order for the Maxwell system to be 

self-consistent. This condition is not sufficient, however, in the sense that it cannot 

replace any one of the system equations. Indeed, by the Ampère–Maxwell law and the 

conservation of charge there follows the time derivative of Gauss’ law for the electric 

field [Eq. (4)]; this, however, does not imply that Gauss’ law itself is valid. Of course, 

the reverse is true: because Gauss’ law is valid, the same is true for its time derivative.  

      Our view, therefore, is that the Maxwell equations form a system of four 

independent PDEs that express respective laws of Nature. Moreover, the self-

consistency of this system imposes two necessary (but not sufficient) conditions that 

concern the conservation of charge and the wave behavior of the time-dependent e/m 

field. In the next section the problem is re-examined from the point of view of 

Bäcklund transformations.  

 

 

2.  A Bäcklund-transformation view of Maxwell’s equations 
 

In previous articles [8,9] we suggested that, mathematically speaking, the Maxwell 

equations in empty space may be viewed as a Bäcklund transformation (BT) relating 

the electric and the magnetic field to each other. Let us briefly summarize a few key 

points regarding this idea. To begin with, let us see the simplest, perhaps, example of 

a BT.  

      The Cauchy-Riemann relations of complex analysis,  

 

        ux = vy    (a)        uy = – vx    (b)               (6) 

 

(where subscripts denote partial derivatives with respect to the indicated variables) 

constitute a BT for the Laplace equation,  

 

        wxx + wyy = 0                (7) 

 

Let us explain this: Suppose we want to solve the system (6) for u, for a given choice 

of the function v(x,y). To see if the PDEs (6a) and (6b) match for solution for u, we 

must compare them in some way. We thus differentiate (6a) with respect to y and 

(6b) with respect to x, and equate the mixed derivatives of u. That is, we apply the 

integrability condition (or consistency condition) (ux)y= (uy)x . In this way we 

eliminate the variable u and we find a condition that must be obeyed by v(x,y):  
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                        vxx + vyy = 0.       

 

Similarly, by using the integrability condition (vx)y= (vy)x to eliminate v from the 

system (6), we find the necessary condition in order that this system be integrable for 

v, for a given function u(x,y):  

 

                       uxx + uyy = 0.      

 

In conclusion, the integrability of system (6) with respect to either variable requires 

that the other variable satisfy the Laplace equation (7).  

      Let now v0(x,y) be a known solution of the Laplace equation (7). Substituting 

v=v0 in the system (6), we can integrate this system with respect to u. It is not hard to 

show (by eliminating v0 from the system) that the solution u will also satisfy the 

Laplace equation. As an example, by choosing the solution v0(x,y)=xy of (7), we find 

a new solution  u(x,y)= (x
2 

–y
2
)/2 +C .  

      Generally speaking, a BT is a system of PDEs connecting two functions (say, u 

and v) in such a way that the consistency of the system requires that u and v 

independently satisfy the respective, higher-order PDEs F[u]=0 and G[v]=0. 

Analytically, in order that the system be integrable for u, the function v must be a 

solution of G[v]=0; conversely, in order that the system be integrable for v, the 

function u must be a solution of F[u]=0. If F and G happen to be functionally 

identical, as in the example given above, the BT is said to be an auto-Bäcklund 

transformation (auto-BT).  

      Classically, BTs are useful tools for finding solutions of nonlinear PDEs. In [8,9], 

however, we suggested that BTs may also be useful for solving linear systems of 

PDEs. The prototype example that we used was the Maxwell equations in empty 

space:  

 

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


    




   



             (8) 

 

Here we have a system of four PDEs for two vector fields that are functions of the 

spacetime coordinates (x,y,z,t). We would like to find the integrability conditions 

necessary for self-consistency of the system (8). To this end, we try to uncouple the 

system to find separate second-order PDEs for E  and B , the PDE for each field 

being a necessary condition in order that the system (8) be integrable for the other 

field. This uncoupling, which eliminates either field (electric or magnetic) in favor of 

the other, is achieved by properly differentiating the system equations and by using 

suitable vector identities, in a manner similar in spirit to that which took us from the 

first-order Cauchy-Riemann system (6) to the separate second-order Laplace 

equations (7) for u and v.  

      As discussed in [8,9], the only nontrivial integrability conditions for the system 

(8) are those obtained by using the vector identities  

 

        2( ) ( )E E E                                                 (9) 
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        2( ) ( )B B B                                                           (10) 

 

By these we obtain separate wave equations for the electric and the magnetic field:  

 

        
2

2

0 0 2
0

E
E

t
 


  


                                                          (11) 

 

        
2

2

0 0 2
0

B
B

t
 


  


                                                           (12) 

 

We conclude that the Maxwell system (8) in empty space is a BT relating the e/m 

wave equations for the electric and the magnetic field, in the sense that the wave 

equation for each field is an integrability condition for solution of the system in terms 

of the other field.  

      The case of the full Maxwell equations (1) is more complex due to the presence of 

the source terms , J  in the non-homogeneous equations (1a) and (1d). As it turns 

out, the self-consistency of the BT imposes restrictions on the terms of non-

homogeneity as well as on the fields themselves. Before we get to this, however, let 

us see a simpler “toy” example that generalizes that of the Cauchy-Riemann relations.  

      Consider the following non-homogeneous linear system of PDEs for the functions 

u and v of the variables x, y, z, t :  

 

          ux = vy       (a)        uz = vz + p (x, y, z, t)     (c)     

                     (13) 

        uy = – vx    (b)         ut = vt + q (x, y, z, t)     (d)       

 

where p and q are assumed to be given functions. The necessary consistency 

conditions for this system are found by cross-differentiation of the system equations 

with respect to the variables x, y, z, t . In particular, by cross-differentiating (a) and (b) 

with respect to x and y we find that uxx+uyy=0 and vxx+vyy=0; hence both u and v must 

satisfy the Laplace equation (7). On the other hand, cross-differentiation of (c) and (d) 

with respect to z and t eliminates the fundamental variables u and v, yielding a 

necessary condition for the terms of non-homogeneity, p and q; that is,  pt – qz = 0. This 

means that the functions p and q cannot be chosen arbitrarily from the outset but must 

conform to this latter condition in order for the system (13) to have a solution.  

      As an application, let us take v=xy+zt (which satisfies the Laplace equation 

vxx+vyy=0) and let us choose p=2t and q=2z (so that pt – qz = 0). It is not hard to show 

that the solution of the system (13) for u is then given by  

 

          u (x, y, z, t) = (x
2 

– y
2 

) / 2 + 3zt + C .   

 

Notice that  uxx+uyy=0, as expected.  

      Let us now return to the full Maxwell equations (1), which we now view as a BT 

relating the electric and the magnetic field and containing additional terms in which 

only the sources appear. As can be checked, there are now three nontrivial 

integrability conditions, namely, those found by applying the vector identities (9) and 

(10), as well as the identity  
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          0B                                    (14) 

 

(the corresponding one for E  is trivially satisfied in view of the Maxwell system). By 

(9) and (10) we get the non-homogeneous wave equations  

 

        
2

2

0 0 02

0

1E J
E

t t
   



 
    

 
                                          (15) 

 

        
2

2

0 0 02

B
B J

t
  


    


                                               (16) 

 

Additionally, the integrability condition (14) yields the equation of continuity (2),  

 

        0J
t


   


                                   (17) 

 

expressing conservation of charge. Notice that, unlike (15) and (16), the condition 

(17) places a priori restrictions on the sources rather than on the fields themselves!  

      In any case, the three relations (15) – (17) are necessary conditions imposed by 

the requirement of self-consistency of the BT (1). As explained in Sec. 1, however, 

these conditions are not sufficient, in the sense that none of them may replace any 

equation in the system (1). In particular, the equation of continuity (17) may not be 

regarded as more fundamental than the Gauss law (1a) for the electric field.  

 

 

3.  Conclusions 
 

Let us summarize our main conclusions:  

      1. The Maxwell equations (1) express four separate laws of Nature. These 

equations are mathematically consistent with one another but constitute a set of 

independent vector relations, in the sense that no single equation may be deduced by 

the remaining three. In particular, the physical arguments that attempt to render the 

two Gauss' laws “redundant” are seen to be artificial and unrealistic.  

      2. We consider the Maxwell equations as physically acceptable simply because 

the system (1) and all conclusions mathematically drawn from it represent 

experimentally verifiable situations in Nature. Among these conclusions are the 

conservation of charge and the conservation of energy (Poynting’s theorem). It should 

be kept in mind, however, that conservation laws appear as consequences of the 

fundamental equations of a theory, and not vice versa. In particular, conservation of 

charge, in the form of the continuity equation (17), is a physically verifiable 

mathematical conclusion drawn from the Maxwell system (1) but it may not be 

regarded as more fundamental than any equation in the system. The same can be said 

with regard to the existence of e/m waves, expressed mathematically by Eqs. (11) and 

(12).  

      3. From a mathematical perspective, the Maxwell system (1) may be viewed as a 

Bäcklund transformation (BT) the integrability conditions of which (i.e., the 

necessary conditions for self-consistency of the system) yield separate (generally non-



NAUSIVIOS CHORA, VOL. 8, 2022  

 

http://nausivios.hna.gr/ 

C-10 

homogeneous) wave equations (15) and (16) for the electric and the magnetic field, 

respectively, as well as the equation of continuity (17). These integrability conditions 

are derived by differentiating the BT in different ways; hence they carry less 

information than the BT itself. Consequently, none of the integrability conditions may 

replace any equation in the Maxwell system.  

 

Acknowledgment 
 

We thank Dr. Norman H. Redington of MIT for suggesting future directions for this 

research.  

 

 

References 
 

1. C. J. Papachristou, Introduction to Electromagnetic Theory and the Physics of 

Conducting Solids (Springer, 2020).
1
  

2. J. D. Jackson, Classical Electrodynamics, 3rd Edition (Wiley, 1999).  

3. W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism, 2nd 

Edition (Addison-Wesley, 1962).  

4. D. J. Griffiths, Introduction to Electrodynamics, 4th Edition (Pearson, 2013).  

5. R. K. Wangsness, Electromagnetic Fields, 2nd Edition (Wiley, 1986).  

6. W. N. Cottingham, D. A. Greenwood, Electricity and Magnetism (Cambridge, 

1991).  

7. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).  

8. C. J. Papachristou, The Maxwell equations as a Bäcklund transformation, 

Advanced Electromagnetics, Vol. 4, No. 1 (2015), pp. 52-58.
2
  

9. C. J. Papachristou, A. N. Magoulas, Bäcklund transformations: Some old and 

new perspectives, Nausivios Chora, Vol. 6 (2016) pp. C3-C17.
3
  

 

 

 
  

                                                
1
 https://arxiv.org/abs/1711.09969 

2
 http://www.aemjournal.org/index.php/AEM/article/view/311 

3
 http://nausivios.snd.edu.gr/docs/2016C.pdf 

https://arxiv.org/abs/1711.09969
http://www.aemjournal.org/index.php/AEM/article/view/311
http://nausivios.snd.edu.gr/docs/2016C.pdf


PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2022, Hellenic Naval Academy 

C-11 

 

 

 

 

Field Induced Alteration of a Qubit’s  

“Hadamard Time”  

Theodosios Geo Douvropoulos   

Hellenic Naval Academy, Physical Sciences Sector, Pure & Applied Physics, 

Hatzikyriakou Ave. Piraeus, 18539, Greece 

douvrotheo@yahoo.com  

 

Abstract. In this paper, we explore the dynamics of a qubit state prepared in a 

double-well potential generated by the coupling of the system with the 

environment through two independent field barriers. Thus, we adopt the path-

integral theory to reveal the system’s complex energy spectrum through the 

construction of its Green’s function. In particular, we focus on the alteration of 

the “Hadamard Time” defined in the current paper. We qualitatively study the 

aforementioned alteration as a function of various parameters, such as the 

magnitude of the field barriers, the relative size of the well related to the 

internal barrier, and the shape similarity factor. We analytically define these 

quantities inside the manuscript. We also discuss in detail the appearance of the 

exponential decay rate. Since our results come in analytic form, they permit 

their future numerical application in realistic physical and quantum computing 

systems.  

Keywords: Qubit, Hadamard Gate, Superposition State, Beam Splitter, Double 

Well Potential (DWP), Path Integral Method, Inversion Period, Exponential 

Decay Rate, Decoherence    

     PACS: 03.65.−w, 03.65.Sq, 03.65.Xp  
 

 

INTRODUCTION 

 
    The qubit, which is the quantum version of the classical bit [1], corresponds to a 

class of quantum systems possessing a characteristic property that can admit two 

possible values. In general we focus our attention on this property and consider the 

rest as frozen or out of interest. Thus considering the spin of an electron, the two 

possible values are namely the spin up and spin down while considering the 
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polarization of a photon, the horizontal and vertical polarization, [2,3]. As far as the 

position of an atom or electron is concerned, the double well potential serves as a one 

dimensional qubit where the atom or electron can be found in the left or right well. 

Spin qubits can be realized by either solid-state or superconductor technology [4,5], 

and at the same time position qubits (for instance the presence or absence of an 

electron in a quantum dot) which are known as charge or electrostatic qubits, can also 

be implemented either in a semiconductor manner [6,7] or using a Cooper pair box  

[8,9] in superconductors. A combination of the above deals with the use of hybrid 

spin-charge superconducting qubits, e.g. transmons, [10]. The interested reader may 

find a review of the current semiconductor and super-conducting technologies in 

[11,12].   

   The one-dimensional double well potential (DWP), depicted by Figure 3 that 

follows, not only stands throughout the ages as a model for the study of some peculiar 

but still most basic quantum phenomena, such as internal tunneling and energy 

splitting, but at the same time is a widely used practical model for the study of a 

variety of systems and processes in Physical Sciences. Out of the plethora of such 

studies, we distinguish the Ammonia maser [13,14], the Bose Einstein condensates 

[15-17], structural phase transitions [18], matter-wave interferometry in atomic 

dimensions [19], realization of qubits, [20], and realization of beam splitters [21]. 

    Quantum computation strongly relies on the realization, manipulation and 

control of qubits. As far as the realization is concerned, a basic technique deals with 

the construction of a double - well potential in such a way that the energies of its first 

two eigenstates appear to have a large gap with the rest, [22,23]. For example holes in  

quantum wells have the attractive property of a light effective mass which is highly 

desirable for spin qubits since it provides large energy level spacing in quantum dots, 

[24].  In addition it is well known from the late 90s that we can use linear components 

of quantum optics technology, such as lossless symmetric beam splitters, for the 

implementation of universal quantum gates such as the Hadamard gate, and to further 

perform precisely the computation of quantum gates and algorithms, [25]. A Bose 

Einstein Condensate beam splitter uses condensates instead of single particles and can 

be realized with a DWP of tunable height, [21].  

     A single particle qubit implemented as a DWP, can be built up from two 

coupled semiconductor quantum dots, where the band offset of different materials in 

one direction results in an effective one dimensional DWP, [26-28]. Alternatively it 

can be built up through the use of superconductor devices based on the Josephson 

effect, where the effective DWP  results via a RF-SQUID circuit [29-31]. A third 

option comes from trapped ions in a DWP which are confined via  the use of strong 

magnetic and electric fields, [33-35]. However it is extremely difficult to confine a 

trapped ion in different topology than the one of a in-line arrangement providing a 

low scalability and in addition just as other quantum processors they demand 

extremely low temperatures. Despite the complexity of the above mentioned systems, 

their basic structure and dynamics can be explained through basic principles of the 

one dimentional DWP, [35-37].  

     Thus, during the recent years many different schemes both theoretical and 

experimental have been proposed for the implementation and manipulation of qubits 

through effective one dimensional DWP. Mentioning a few we distinguish the 

analysis of the phase evolution of the Cooper pairs wave function for obtaining a 

DWP with cusp barriers for current qubits, [38], the DWP Josephson junction 

between two d-wave superconductors, as an implementation of a phase or flux qubit, 

[39], the analysis for designing a  vortex qubit created in a DWP in a semiannular 
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Josephson junction, [40,41], buckling nanobars which are nano-electromechanical 

quantum coherent systems as to be forming a DWP for charge qubits, [42], quantum 

dots in semiconductor nanocolumns prepared by epitaxial growth and where the 

carrier confinement  in the direction of the DWP can be achieved by conformal 

overgrowth of a semiconductor barrier layer, [43], and many others.  

   A suitably engineered quantum well can stabilize the charge state of the qubit 

against photoionization [44] and when an electric field is imposed on the DWP the 

induced lack of inversion symmetry allows the possibility of different qubit 

manipulation methods such as electron spin resonance, electric dipole spin resonance 

and g-tensor modulation resonance, [45]. On the other hand the most exotic 

phenomena of quantum mechanics such as quantum entanglement can be produced 

through a DWP qubit and its interaction with a source of non classical light, [46]. In 

addition, single and two-qubit operations can be realised through a high degree of 

control over the tunnel coupling of the DWP, while spin-orbit coupling obviates the 

need for microscopic elements and enables rapid qubit control through fast rotations, 

[47].  

   As far as the dynamics of the qubit is concerned, decoherence was understood to 

play a key role at the very beginning of quantum computation, [48]. Coherence time 

refers to the length of time that a quantum superposition state can survive. The key is 

to have a quantum superposition live longer than it takes to perform an operation or 

experiment. Manipupation of the qubic destroys isolation and induces decoherence of 

its state. It is experimentally observed that spin-based qubits  maintain coherence for a 

longer time length than electrostatic qubits [49].  

   Hence, all the above motivated us for producing the current work.  In this paper 

we study the dynamics, meaning the time evolution, of a qubit state in a DWP, which 

is a potential that possesses two minima separated by an internal barrier, under the 

additional influence of a two channel (barrier) field, as this is depicted by Figure 2 

that follows. In a way, it continues previous works of ours on the DWP, [50,51]. Such 

a model adds to the normal dynamics of the DWP the possibility of irreversible 

dissipation to the free particle continuum. The work described in this paper, 

constitutes a particular implementation of the path integral method to the model 

potential which is depicted by Figure 2, where a barrier field is inserted in each side 

of the unperturbed potential of the qubit, in order to qualitatively describe not only the 

field-induced variation of energy splitting and/or time period of internal oscillation, 

but the appearance of exponential decay rates as well, describing the dissociation of 

the qubit. However we should have in mind, that when it comes to application, most 

of the formal and mathematical work uses arbitrary parameters. Therefore, the 

interesting information of such calculations is not in the absolute value of the 

numbers, since it is hard to see how experimental conditions and measurements can 

test exactly the model problem. In addition, the present treatment has allowed the 

derivation of analytic formulas for the energies, the energy shifts, and energy widths, 

due to tunneling. Such a potential has not been treated before analytically, making the 

problem rather challenging.  

   The present paper is organized as follows. In the first section we describe in short 

the path integral method to be applied, for the construction of the qubit’s Green’s 

function, introducing the various phase factors to be used. Next we actually apply the 

method and gradually construct the qubit’s Green’s function, by taking in account the 

various phase factors that the system’s topology acquires through successive 

propagation and reflection events. We also carry out the tedious algebra and calculate 

the qubit’s Green’s function in a compact fractional form.  In the third section we 
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briefly review the dynamics (time evolution) of the DWP and define the Hadamard 

Time. Next we bring out the significance of its energy spectrum, as far as the energy 

splitting and the Hadamard Time are concerned. In the fourth section we reveal the 

system’s complex energy spectrum, while in the next section we analyze the 

dynamics of the model studied, concerning the alteration of the Hadamard Time and 

the exponential decay rate, for various values of the parameters used. In this section 

we introduce quantity  ( , )sim    that measures the shape of the qubit’s internal 

barrier relative to the one of its well. In the final section we conclude, and light our 

most important results.    

 

  

 

THE CONSTRUCTION OF THE QUBIT’S GREEN’S 

FUNCTION VIA PATH INTEGRALS 

 
     As is well known, both the Schrodinger and Heisenberg picture in Quantum 

Mechanics, deal with the basic dynamical differential equations involving either the 

states or the operators, [52]. In deep contrast, Feyman’s formulation of path 

integration [53], offers an alternative geometric picture and targets directly towards 

the solution of the Schrodinger equation, which is constructed in the form of a 

propagator.  

   Feynman showed how a system’s propagator can be determined by the “sum over 

histories”, meaning quantity  

 
 ( ) /

( )
iS x t

FK N e Dx t                                                                                   (1) 

 

where the above functional expresses the sum over the classical paths and S stands for 

the classical action. Thus, the square meter of the propagator, which is 
2

2 1 1( ,  ;  , )K x t x t , gives the probability of finding the particle at the time t2, assuming 

the starting and ending point to be x1   and  x2   respectively.  Its energy Fourier 

transform, called the fixed energy amplitude [54], is the system’s Green’s function 

K(E). Its construction reveals the energy spectrum of the system under study, since 

the Green’s function can be written as a sum of energy pole terms of the following 

form 

 

( )
Z

n

n n

c
K E

E 
                                                                                         (2) 

 

The Zn energy poles may be real or complex, depending on the dynamics of the 

system under study.   

   In their periodic orbit theory, Gutzwiller [56] and later Miller [57,58], showed 

the way Green’s function can be constructed for one dimensional propagation, via the 

calculation of all the possible changes in phase of the wave-function through the 

corresponding changes of the action, during the system’s propagation over the 

classical paths. Holstein [59] in his seminal work, put all these together, and nicely 

showed how the fixed energy amplitude, can be used to achieve analytic continuation 
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of the propagator to forbidden regions of motion, (potential barriers), where the 

particle  travells in imaginary times. His central result for the calculation of the 

transmission amplitude via an infinite set of paths that the particle follows, can be 

written in the compact form that follows 

 

 

1 2

( )
2

2
11

( )  
N j

ij

i r rj

m
K E s

k









  
  

  
                                                                              (3)   

                

In the above equation 
1 2r rk is a non local wave number of the particle  connecting the 

initial and the final point of propagation and defined by 

 

1 2 1 2( ) ( )r r k r k rk                                                                                                     (4) 

 

where   2
( ) 2 ( ) /k y m E V y  ,with E standing for the energy and V(y) for the potential 

function. The index j corresponds to a particular path, while the index i corresponds to 

a certain event along the path. Therefore, the symbol 2

ijs   represents each i event 

factor that contributes to the j
th

 path normalized to the maximum change in phase 

which is equal to 2π. Their total number is Ν(j) and depends on the path. These event 

factors are of two types. One type represents propagation and the other represents 

reflection from a turning point.  

The 2

ijs   propagation event phase factors describe propagation (from a to b) in an 

either allowed region (given by  ( )
exp ( )[ ]

b

b
a

i b
i ek y dy

    , where the   superscript 

stands for the shape of the well), or in a forbidden region (from b to c) of motion 

(given by ( )
exp ( )

c

b
b

b
ey dy


 


 
  
  

 with     2
( ) 2 ( ) / ( )y m V y E ik y    , where 

the   superscript stands for the shape of the barrier). The dimensionless phase 

quantities ( )b  and ( )b  will be called the “qubit well magnitude” (qwm) and the “ 

qubit barrier magnitude” (qbm)  respectively. A large qwm corresponds to a deep and 

broad potential well while a large qbm corresponds to a high and broad potential 

barrier. These quantities appear continuously in the text and figures that follow and 

play a significant role in the qubit’s dynamics since the first contributes to the 

oscillation of its orthogonal basis states and the second to the tunneling phenomenon.  

The 2

ijs  reflection event phase factors describe reflections from turning points, (–i for 

reflection from a turning point in an allowed region, + i/2 for reflection in a forbidden 

region , and –1 for reflection from an infinite barrier). 

    However, someone notes that the reflection factors (except of course for the case 

of an infinite barrier), do not take in account the relative size of the involved areas. 

For example if a particle is reflected back to a classically allowed region of motion, 

the reflection factor will always be equal to (-i), no matter how large is in magnitude 

the potential barrier on the other side of the turning point. Clearly, this is an issue that 

has to be solved and it actually does in the context of the present research, as will be 

seen later.  Both  ( )b  and ( )b  are dimensionless phase quantities. The above 

mentioned  rules are in total depicted by Figure 1 that follows and can also be found 

in standard textbooks of path integrals, or quantum tunneling as well, [54,60]. For the 
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present requirement of computing the overall transmission amplitude, the points r1 

and r2 are in the classically allowed region of motion of the left well of Figure 2. 

 
 

                            

 4 2
( ) ( ) ( ) ( )( 1) ( )( ) ( ) ( ) ( )

1

2 2
b b b b b i b b b

i
         

e x p ( )
c

b
b

y d y 
 
 

  
e x p ( )[ ]

b

b
a

i k y d y  
V(y)

E
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Total amplitude for overall propagation 
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FIGURE 1.  The rules for the construction of the path integral amplitudes through the 
2

ijs 
 

event factors. Here we depict a path example  involving 9 event phase factors. The dash line 

stands for propagation in a classically allowed region, while the dot line for propagation in a 

classically inaccessible region. These regions are characterised so by the relative value of the 

energy. The square reflection factor (-1) stands for reflection from an infinite barrier, the 

circle reflection factor (-i) for reflection back to a classically allowed region and the elliptic 

reflection factor (+i/2) for reflection back to a classically inaccessible region.  

 

 

 

     As far as the model is considered to have only one degree of freedom, 

corresponding to the relative position of the atom or electron, it can be treated as a 

one dimensional physical system. Thus we can apply the path integral method for the 

construction of the Green’s function. In addition we should sketch the perturbed one 

dimensional potential as in Figure 2 that follows:                                
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potential energy

positionRL

r
2

r
1

y





 



+ f
2

0

= Field barriers

= Internal barrier

edcba

+ f
1

V(y)

E

 
 

FIGURE 2. The potential of a perturbed double well. There are five regions of motion: the 

classically accessible regions L and R corresponding to states 0 and 1 , and the classically 

inaccessible regions ,  ,      of the internal and the field barriers respectively. The blue lines 

f1 and f2 stand for the electrostatic field imposed on the right and left well respectively while E 

stands for the particle’s energy. The slope of f1 and f2 is proportional to the corresponding 

field strength. There are four turning points of motion (a,b,c,d) and points r1 and r2 lie 

between a and b of the left well. 

 

 

Figure 2 describes the induced topology of the potential as this is determined by the 
specific value of the energy. There are four turning points, meaning a, b, c, and d.  In 
this way we have five regions of motion, two classically allowed (L and R wells) and 
three classically forbidden (barriers ,  ,     ). In order to construct the overall 
transition amplitude for propagation between points r1 and r2 of region L, we divide  
the problem into simpler ones.       

For this we write K(E) as a sum of transition amplitudes involving specific regions of 

motion each time, of the form:   
 

    

1 2

2

 ; 

, , , , , ,
,

1 , , ,

( )
r r

L L R L R
L Lm

K E
k

  


    
      

  
                              (5)    

                                         

where 
, ,L R

 for example denotes the amplitude for propagation involving the 

classically allowed regions L and R as well as the internal barrier, in all possible 

ways. Table 1 that follows explains the symbols that we will use in the rest of the 

manuscript, concerning the various amplitudes.  
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SYMBOL DESCRIPTION 

r  Contribution of a single propagation in a 

classically allowed region as a function of the 

ending point r for starting point a 

b  Contribution of a single propagation in a 

classically forbidden region as a function of 

the starting point b 

 1 2( ; )qA r r  Amplitude for a single propagation from 

left to right inside region q between points r1 

and r2  

1 2 ( ; )qA r r  Amplitude for infinite repetitions of the 

propagation between r1 and r2 in all possible 

ways, while staying at region q 

   2

1

r

r
p q  

Overall amplitude for exhausting 

combination of the regions p and q 

propagating between r1 and r2  

   
,p q  Total contribution to the Green’s function 

through the exclusive combination of regions 

p and q 

 

TABLE 1. Basic symbols and their definition, in the current manuscript.  

 

 

In Appendix A we separately develop each amplitude of eq.(4) providing the basic 

steps. In the lines that follow we give an example by calculating the contribution of 

the L well. Transition Amplitude 
L  involves propagation inside the classically 

allowed region of the left potential well where the state 0  lives. It is constructed by 

fundamental amplitudes, for example  ( ; )LA r a  that connects points r and a in a single 

straight path moving from right to left, (the arrow denotes direction), and by 

amplitudes ( ; )LA r a , that connect r and a with infinite repetitions (including 

reflections) in all possible ways. In this way we can write: 

 

 

 

1 2 1 2 2

1 2 2

( ; ) ( ; )( ) ( ; )( ) ( ; )+ ( ; )( ) ( ; )  

    + ( ; )( ) ( ; )( ) ( ; ) ( ; )( ) ( ; ) 

L L LL L L

L L L L L

L A r r A r a i A a a i A a r A a b i A b r

A r b i A b b i A b r A b a i A a r

     

   
 (6) 

 

Table 2 that follows contains the calculation of the above mentioned fundamental 

amplitudes:    
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    Fundamental amplitudes of area L         Function of event phase factors 

                        1 2( ; )
L

A r r                             
2 1

/r r   

                        1( ; )
L

A r a                                
1r

  

                        1( ; )
L

A r b                             
1

/b r   

                        2( ; )
L

A a r                                
2r

  

                        2( ; )
L

A b r                             
2

/b r   

                        ( ; )
L

A a a  
                       

1

2 Re b b 


 

                        ( ; )
L

A a b  
                         

1

2 Re b


 

 

TABLE 2. Calculation of the amplitudes involved in the propagation inside region L.  

 

 

Giving a second example, the ( ; )LA a a  amplitude comes from the infinite repetition 

of the (a;a) propagation, including the reflection factors, which is 

    
2

1 1
( ; ) 1 ( ) ( ) ...

1 2 Re
L b b

b b b

A a a i i 
  

      


                                      (7)  

It is also clear that 

                                
1

( ; ) ( ; )
2 Re

L b L

b

A a b A a a


                                             (8) 

Putting all these together we get for the L  amplitude the following expression 

 

                1

2 1 2 1

2 1 21

2
2

2

1
/

1

rL b
r r b r r

b r r rr

ii


    
   


  

     
   

                               (9)                  

               

Introducing / 4 1/ 2

b bi   we finally get for the  L  amplitude 

 

                         1 1 2

2

/ 4 / 4 / 4

/ 4

Im   2 Im    Im    
2

  Re

r r rL

r b b

i

  



  

  
                                            (10) 

 

Equation A.15 of Appendix A gives Green’s function for the total amplitude 

contribution, as 

 1 2

2

 ; 

1
( )

+2 1 ( ; ) ( ; ) Re1
r r

m
K E

L Rk r a A a a b b 

 
 

  
   

                             (11) 

where the amplitude 
+L R   is defined by equation A.12 of Appendix A and 

given as 
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 

   
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



 


   

 
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  


    

 
 
  

    

   (12) 

 

and the field barriers   and acquire phase factors to form the following barrier 

magnitudes ( )
( )exp

e
d

d
d

y dy e 
 


 
  
  

and ( )

0

( )exp
a

a

ay dy e 
 


 
  
  

 

respectively, and where of course 
2

2
( ; )

2 1 / 4

a

a

i
A a a




 


. 

 

              

SHORT REVIEW OF THE TIME EVOLUTION OF A 

QUANTUM STATE IN A DOUBLE WELL POTENTIAL 

 
   In the present chapter we briefly review the dynamics concerning the time 

evolution of a quantum state in a double well structure, as this can be found in any 
standard textbook of quantum mechanics and quantum tunneling [14,61]. For this, we 
assume to have the two initially separated lowest, degenerate eigenstates of the two 

independent unperturbed wells, namely 0 and 1  with energy Eo, that do not overlap 

with each other, as depicted by Figure 3 that follows. These states will interact through 
the finite potential barrier that separates the two wells to construct the eigenfunctions 
of the DWP. Since the potential is an even function, its Hamiltonian commutes with 
the parity operator. Thus we can construct an orthonormal basis of symmetric and 
antisymmetric states, as follows 

                                   
1

0 1
2

S      and   
1

0 1
2

                              (13) 

 

In fact we can mathematically describe the finite potential barrier as a perturbation 

matrix of the form U   , [62], where of course   stands for the Pauli matrice: 

                                          
0 1

1 0


 
  
 

                                                                 (14) 

Hence the total Hamiltonian becomes equal to
o

o

E
H

E





 
  
 

. Diagonalization of the 

Hamiltonian gives two new eigenvalues for the symmetric and antisymmetric state, 

which are respectively: S oE E   and oE E    , whose energy distance is equal 

to Δ=2δ. Thus, the degeneration of the two initial states is removed, and an energy 
splitting appears of the corresponding energy levels.   

Let us assume now that at t=0 the system is prepared in the state 0 of the left well, 

which can be written as a superposition of states of the DWP: 
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 
1

( 0) 0
2

t S A     . The time evolution of the state will then be 

    / /1
( )

2

o oit E it E
t e S e A

    
   . In terms of the initial eigenfunctions of the two 

separate wells, we can write 

 

                              /
( ) cos( / ) 0   + sin( / ) 1oitE
t e t i t 

                            (15) 

 

We particularly focus on the “Hadamard Time”, defined as the time needed for the 

initial state of the qubit ( 0 or 1 ) to come in an equally weighted superposition of the 

two complementary orthogonal states, 0  and 1 . In the context of the present 

research activity this time is defined as the Hadamard Time, since the action of the 

Hadamard gate on 0  is actually  
1

0 0   + 1
2

  . Thus, the time needed for the 

initial state 0  to come in an equally weighted superposition of itself and its 

complementary state 1 is equal to 

                                         
4

Hd

h
T 


                                                                       (16) 

 

Hadamard Time comes as a function of the energy difference of the two lower states of 
the DWP. Thus, in order to explore the system’s dynamics under the action of the two 
field barriers, we must first analyze its energy spectrum. The diffusion of the initial 
state to the continuum set of states through the field barriers, turns the spectrum into 
complex. Hence, the real part of the spectrum determines the alteration of the 
Hadamard Time while the imaginary part determines the state’s decay rate to the 
continuum, meaning decoherence.                 
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FIGURE 3. The doublet splitting in a DWP. The two initially degenerate states 0  and 

1  with energy  Eo  of the two separate unperturbed wells,  interact through the internal 

potential barrier  and form the symmetric (S)  and antisymmetric states (A) of the full 

potential, with energies Eo – δ and Eo + δ respectively.  
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THE ENERGY SPECTRUM OF THE FIELD PERTURBED 

DOUBLE WELL 
 
      

   As we have already seen, the step by step construction of the total Green’s 

function, reveals gradually additional fractional pole terms, coming as the extra 

contribution of each new region of motion. In turn, these poles correspond to the 

energies of the system due to the qubit interaction with the field barriers. 

    Thus, for each fractional contribution of the total Green’s function, we need to 

expand the denominator around the eigenvalues En of the unperturbed well. In this 

way, we calculate the energy shift that takes place, coming from both type of barriers, 

namely the internal qubit and the field diffusion barriers. In Appendix B we 

analytically calculate the energy poles that arise through the above described method. 

In the lines that follow we give an example of such calculation, concerning the poles 

of the unperturbed quantum well meaning region L. 

Region L contributes with the pole term: 

 

                             
1

, ,ReL

n b n b nPole  


                                           (17) 

 

The poles of the fractional term arise naturally from  the condition Re 0b  , which 

can be equivalently written as 

 

                           ( ) / 2
b

a

k y dy n                                                                     (18) 

 

Assuming a parabolic type of potential well, as depicted by Figure 2, meaning a 

function of the form 
2( ) ( )oV y y y   , where 

2

2

2m
 


 with Τ being the period of 

classical oscillations and y  corresponds to the bottom of the well, we can actually 

calculate the integral in (18) and find the energy poles as 

 

1

2
nE n 

 
  
 

                                    (19) 

 

which are the exact eigenvalues of the harmonic potential. Giving another example 

we can assume a rectangular potential well of infinite walls, which is approximately 

true as long as we can assure that the internal barrier is much higher than the lower 

eigenstate of the well. Then we would have instead of (10) the following:  
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and consequently 
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 

2 2
2

22
( )

2

2

b b

n n
a a

k y dy dy
m

n E n E n
m b a


      


                              (21) 

 

which of course are the exact eigenvalues of a particle in a box.  Thus, the pole term 

of (17) reveals the eigenvalues of the isolated unperturbed potential well.  

According to Appendix B   the energy eigenalues for the rest region amplitudes go as 

following: 

 

a) Regions L and   contribute with the perturbed eigenvalues  
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nZ E d b d b i d b


   

                              (22) 

 

where the subscript n denotes calculation on the eigenvalue En and where the symbol 
nE

d  denotes derivation with respect to the eigenvalue En.    

 

b) Regions L,   and R contribute with the perturbed eigenvalues   
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c) Regions , , ,L R  contribute with the perturbed eigenvalues  
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d) finally regions , , ,L R and   contribute with the perturbed eigenvalues  

              
                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(25) 

 

 

 

 

FIELD INDUCED  DYNAMICS OF A QUBIT STATE 

 
 

The time evolution of a qubit state in a double well structure, as this is induced by 

the presence of two independent field barriers depicted by Figure 2, concerns the 

alteration of the Hadamard Time, as well as the appearance of the exponential decay 

of the initial state into the continuum.  As we have already seen the spectrum turns to 

be complex taking the following form for the lowest state: 
2

o OE E i 


  . As far as 

the real part is concerned, the result is the splitting of the Eο which is the lowest 

energy of the unperturbed wells, into two new states, with energies equal to  
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and then the Hadamard Time is given according to (16) as  
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where the subscript f  generally denotes the presence of a field barrier. 

In the absence of the field barriers the WKB approximation is obtained as [24,26] 

                
2

,
/ 2 b
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                                                                                   (28) 

 

where   is  the frequency of the classical periodic motion between turning points a 
and b corresponding to energy 

OE . The above result in (26) is obtained using the linear 

connection formulae. In the lines that follow we calculate the Hadamard Time  
separately for the  cases of  i) the unperturbed DWP, ii) the double well plus field 
barrier f1 and iii) the double well plus both field barriers + f1 and +f2 depicted by 
Figure 2. 

  

i) The case of the Unperturbed Double Well Potential: 

 

According to (23) the real parts of the doublet splitting, read 
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Thus the Hadamard Time is given as: 
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(30)  

 

which of course goes far beyond the WKB expression. In fact, as can clearly be seen, 

eq. (30) reduces to (28) by keeping only the dominant terms (omitting terms like 
2 ( )oe
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 or smaller), and taking the barrier to be energy independent, meaning taking 
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Thus we are motivated to further explore the energy dependence of the Hadamard 

Time. For this, we introduced in (30) quantity 
 

                                   ( ) / ( ) ( , )
E E

d b d b sim                       (31) 

 

 

defined as the “shape similarity factor” between the barrier and the well, given as the 

ratio of the change in barrier magnitude to the change in well magnitude, as energy 

increases, some kind of ( )b  derivative with respect to ( )b . It is easily understood 

that the above quantity is negative since ( )b  increases with the increment of the 

energy while ( )b  decreases. The above are depicted by Figure 4 that follows. 
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FIGURE 4. The variation of the shape similarity factor ( , )sim   for two different 

cases of the potential barrier shape, relative to the one of the potential well. Note that the blue 

colour  denotes a negative change in the barrier magnitude as energy increases (shorter 

barrier) while the green colour a positive change in the well magnitude (deeper well).      

                   

In Figure 5 that follows we depict Hadamard Time as a function of the similarity 

factor for two different values of the qubit barrier, employing (30).  
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FIGURE 5. The variation of the Hadamard Time, (normalised to the WKB expression), as 

a function of the similarity factor ( , )sim    which relates the change of the field magnitude 

to the change of the well magnitude with energy increament, for two different values of the  

qubit barrier magnitude. For each case the Hadamard Time becomes minimum for a certain 

value of the similarity factor ( , )sim   .   
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ii) Field barrier f1 active and field barrier f2 inactive 

According to (B-9) of Appendix B the real parts of the energy splitting, read    

 

                                                                                                                                    

 

 

 

(32) 

For the present purpose we currently disregard the energy dependence of the field 

barrier and write the real parts of the energy splitting as follows  
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Thus the Hadamard Time is given as: 

 

               

1

1

1 2
2 2

, ,

/ 2 2

, ,

1 22 2

,

2

/

1 1
4

1 1
4 1

f b o d o

Hd Hd WKB

d o b o

f m

b oHd

m

Hd WKB

T T

T e

T e





 

 










     
       

     

     
      

     

                               (34) 

 
 

where we have introduced the dimensionless quantity  
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as a measure of the difference in magnitude between the qubit and the field barrier f1. 
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δm. It is clearly seen that as m  increases, the normalised Hadamard Time tends to 
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FIGURE 6. The  normalised Hadamard Time as a function of the difference in magnitude 

between the field and the qubit barrier. Hadamard Time tends to the WKB expression as the 

difference in magnitude increases and reaches a value twice the WKB one, for a difference in 

magnitude of the two barriers equal to 0.596.   

 

iii) Both field barriers f1 and f2 active.  

According to (B-12) the real parts of the energy splitting, read   
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        (38) 

 

In Table 3 that follows we include the values of various parameters that were 

employed in (38), as these were taken from our previous results.    
 

          Parameter                                       Value 

Qubit barrier strength 

φ(λ) (Figure 5) 

                                0.20  /   0.35                                

Difference in strength 

 ln /
b d

m       

for 200% of the WKB 

value of the Hadamard 

Time (Figure 6)      

                              0.596  /   0.693 

( , )sim   : similarity 

factor for minimum value 

of the normalized 

Hadamard Time in  

        (Figure 5)       

                               1.39  /  1.69 

δ field barrier 

magnitude                 

                                      0.35 

 

 

TABLE 3.  The values of the parameters used in (38) for producing Figure 7 

 

Thus we produce Figure 7 that follows, where the variation of the normalised 

Hadamard Time as a function of the similarity factor ( , )sim     is depicted.  
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FIGURE 7. The variation of the normalised Hadamard Time as a function of the similarity 

factor ( , )sim   which relates the change of the δ field barrier magnitude  to the change of 

the well magnitude with energy increament, for two different values of the qubit barrier 

magnitude. 

   

As far as the imaginary part is concerned, we should point out that this contributes to 

the exponential decay rate of the initial state. This can be seen by taking the Fourier 

transform of the Breit-Wigner or Lorentzian decay amplitude 
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                                                                       (39) 

and extending the spectrum to the full real axis −∞ < E < ∞ instead of being bounded 

from below 0 ≤ E < ∞ (“Fermi’s approximation”). The time evolution of the decaying 

state is then given by  
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Thus the survival  probability of the initial state is given as  

 

                   
/

( ) otP t


                                                                                     (41) 

 

and this is called exponential decay. The decoherence of a quantum superposition 

state due to its interaction with the environment leads to an exponential decay law, 

[65,66]. Thus, /Γο is a meter of the qubit’s decoherence time, meaning the time 

interval that the coherent superposition state survives. However if we do not 

necessarily extend the spectrum we will also find non exponential contributions for 

both small and large times. As far as the region of large times is concerned the non 

exponential contribution dominates the system’s evolution and takes the following 

form, [64], 
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In Figure 8 that follows we depict exponential decay rates 
, , ,L R

o

   and  
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o
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which are twice the imaginary parts of  (B-9) and (B-12) respectively, as a function of 

the similarity factor ( , )sim   , for the parameter values contained in Table 5. In 

addition we extract the value of 18.2 for the similarity factor ( , )sim   , taken from 

Figure 7, which makes the corresponding Hadamard Time a minimum.  
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FIGURE 8. Comparison of the exponential decay rate for barrier field f1 only active and 

both barrier fields f1 and f2 active, as a function of the similarity factor ( , )sim   , for three 

different cases as far as the relative magnitude of the field barriers is concerned: a)   f1< f2     

b) f1= f2 , c) f1>f2 . Note that the two rates come in different orders of magnitude. 

 

 

 

 

CONCLUDING REMARKS 
 

   In this paper, we studied the dynamics of a positional-based qubit structure as 

this is induced and controlled by the presence of two independent electrostatic fields. 

Our attention focused on the Hadamard Time, defined in the present paper as the time 

needed for the initial state to come in an equally weighted coherent superposition of 

the two orthogonal qubit states 0  and 1 , through the particle’s probabilistic 

appearance in both quantum wells. First, we analytically solved the model providing 

analytical relations for the system’s Green function and energy eigenvalues. Second, 

we gave analytical expressions for the intrinsic qubit’s time needed for oscillation 

between its orthogonal states and more than this of the time required for decoherence 

to appear through exponential decay. 

   In quantum computation, knowledge of the Hadamard Time is significant since it 

corresponds to the knowledge of the time needed for quantum coherent superposition 

to appear. The latter makes a substantial difference to quantum computing compared 

to its classical counterpart and makes quantum calculations much faster and the 

quantum computational system itself much more capable, [1]. Thus, in order to carry 

out quantum computations we should, at first, adjust the clock frequency of the 

computational system to the “frequency” f =1/THd of series of revivals of the 

superposition state. One can produce entangled states through such suitably prepared 

superposition states, [67]. Thus, frequency adjustment is required for quantum 

cryptography as well. In addition, our computing system gets less complicated since 

now no Hadamard gate is needed. At the same time, decoherence is unavoidable due 

to the qubit’s interaction with the environment. Decoherence destroys quantum 

superposition and forces the system to decay. The exponential decay rates that we 

analytically calculated in the current paper provide a decoherence time scale for the 
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duration of the computational calculations, maintaining their effectivity and accuracy. 

Decoherence time should be much longer than the period of revivals of the 

superposition state, [48].  In addition, the analytic study of the above phenomena 

through path integral theory provides more insight into the physics of the system. 

   In particular equation (30) gives the Hadamard Time in the case of the 

unperturbed or ideally isolated qubit. Clearly our result goes far beyond the WKB 

expression. But most importantly introduces quantity ( , )sim   , defined as the 

similarity factor that relates the shape of the well to the one of the barrier as explained 

in Figure 4. As far as our knowledge goes this quantity has never before been 

introduced in the international bibliography. It is some kind of correction to the phase 

event reflection factors that contribute to the path integral calculation, (see the 

discussion at the end of the first section). In Figure 5 that follows eq. (30), we have 

depicted the dependence of the normalized (to the WKB expression) Hadamard Time 

on the similarity factor ( , )sim   , for two different values of the qubit barrier 

magnitude. The Hadamard Time receives a minimum value. Both the minimum and 

the minimum position are increasing functions of the qubit barrier magnitude. Thus 

the DWP can be suitably engineered for Hadamard Time to receive its minimum 

value. The latter is very important since then small variations in the qubit’s potential 

will not alter Hadamard Time and consequently will not change the time scale of 

computation ensuring stability. Hadamard Time tends to a constant value when the 

well and the barrier are not shape related, ( , ) 0sim    , but increases unlimited as 

( , )sim    increases, since then the qubit barrier becomes almost impenetrable.  

     For the case of the field barrier f1 alone, which permits the interaction of the 

qubit state with the continuum, eq. (33) describes the dependence of the  Hadamard 

Time on the difference in magnitude of the qubit and the field barrier, with the later  

expressed through quantity δm defined in (34). In Figure 6 we depict the above 

mentioned dependence for a qubit barrier magnitude equal to 0.2.  It is clearly seen 

that the Hadamard Time tends to the WKB expression as the difference in magnitude 

increases, since then the field barrier becomes impenetrable. On the other hand as the 

magnitude of the field barrier is lowered approaching the one of the qubit barrier, 

Hadamard Time increases, since then tunnelling is equally preferable by both 

mechanisms: internal oscillation and external diffusion to the continuum. Giving an  

example, Hadamard Time becomes twice the WKB expression for a difference in 

barrier magnitude nearly equal to 0.6. The field barrier magnitude is directly 

dependent on the field strength imposed on the qubit. Hence a suitably engineered 

DWP and a suitable applied electrostatic field f1, including its starting point and slope, 

uniquely determine the computational time scale.  

   When both field barriers are active, we are interested not only for the change in 

Hadamard Time but for the change of the exponential decay rate as well, compared to 

the case of the field f1 alone. Thus, in Figure 7 we depict the dependence of the 

Hadamard Time with the factor ( , )sim   which relates the change of the δ field 

barrier magnitude  to the change of the well magnitude with energy increament, for 

two different values of the qubit barrier magnitude. The Hadamard Time becomes 

minimum for a certain value of the similarity function. Both the minimum value and 

the minimum position are increasing functions of the qubit barrier magnitude. Quite 

impressively, the minimum region corresponds to much larger values of the similarity 

factor compared to the case of the perfectly isolated DWP. Actually, their difference 

is equal to one order of magnitude. In addition, minimum Hadamard Time becomes 

much smaller, enabling fast but still stable quantum calculations. Interestingly 
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enough, the curve corresponding to the larger qubit barrier, is positioned under the 

smaller qubit barrier curve, after a characteristic value of the similarity factor.  

  As far as the exponential decay rate is concerned, we compare the case where 

both field barriers, f1 and f2, are present, with the one where only the field barrier f1 is 

active. In Figure 8, we have sketched the decay rate as a function of the similarity 

factor ( , )sim   , for the previously mentioned field presences, examining separately 

three different values of the f2 magnitude: greater, equal and less than the f1 magnitude 

where the latter is assumed to remain constant. In each case the two rates come in 

different orders of magnitude and their difference is an increasing function of the f2 

barrier magnitude. Hence, the qubit state decays much faster due to the presence of a 

double field barrier. However, for large values of the similarity factor, the two rates 

become nearly equal, since then the dominant mechanism is the internal oscillation 

and not decoherence. Finally, let us assume that f1 stands for the system intera-ction 

with its environment while f2 electrostatically controls the qubit. Interestingly enough, 

the case of nearly equal barriers, as is shown in figure 8c, does not speed up the 

system’s decay compared to the situation where control is absent. In other words, we 

can control the qubit without accelerating its decoherence.   

 

 

 
APPENDIX A: 

Analytic calculation of the propagation amplitudes beyond Υ
L
. 

 

 

i) Transition Amplitude ,L    
 

This includes propagation inside the classically allowed region of state 0  and the 

classically forbidden internal barrier  . This will affect the eigenvalues of state  0  

which will be naturally perturbed.  We use the following symbolism: 

 
1

,

2
( ; )L b

r L
L A b r   , in order to indicate the fact that we must first alternate  

region L with the one of the internal barrier, in all possible (infinite) ways between 
points r1 and b, and then propagate in all possible ways from point b to r2, while 
staying at region L. So, we must first come to point b which is common for the two 
regions and this results to

1
( ; )

L
A r b . Then we interchange the two regions in all possible 

ways, starting and ending at turning point b. We finally propagate inside region L, 
between b and r2. According to the above we have: 

 

 
1,

1 2
( ; ) ( ; ) 1 ( ; ) ( ; ) ( ; )L

L L L
A r b A b b A b b A b b A b r



 
                                      (A-1) 

 

Repeating the procedure of the previous paragraph, by substituting the phase event 

factors and doing the tedious algebra we find: 

                   1 2

/ 4 / 4

,

2

2

Im Im 1 1
2

Re
Re

4

r rL

b bb b

b

b

      
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                   (A-2) 
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ii)  Transition Amplitude , ,L R   

 

In this case state 0  not only interacts with the internal barrier but with state 1  as 

well. It is obvious that we must first come to turning point c, by interchanging in all 

possible ways the regions of  L,  , R , and then interchange the couples (L, ) and (R,

 ) in all possible ways. Finally we can propagate to point r2 through the couple (L, ) 

or by staying entirely at region L. Putting all these together we get   

 

       2

1

1
, ,

2
1 ( ; )rL R c b c b

r c b c b L
L q L R L A b r


              

       

                                                                                                                                 (A-3) 
 

Table A1 that follows contains the above coupled regions propagation amplitudes as 

these are calculated in terms of fundamental amplitudes:  
 

   Amplitudes for  

the regions  L,  , R  

Function of Fundamental Amplitudes 

         
1

c

r
L                                                        

          
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1
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c
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           
1

( ; ) ( ; ) 1 ( ; ) ( ; )
R R

A c c A c b A c c A c c


 
  

 

TABLE A1. Calculation of the coupled regions ({L,  }, {R,  }) path integral amplitudes in 

terms of fundamental amplitudes. 

 

Repeating the procedure of the previous paragraph, by substituting the phase event 

factors and completing the tedious algebra, we find: 
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        (A-4) 

 

where the twofold symbols   that appear in the first fractional term, mean that we 

must actually sum two fractions, one for each sign. 

 



PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2022, Hellenic Naval Academy 

C-37 

 

iii) Transition Amplitude , , ,L R   

 

In this case state 0  not only interacts with state 1  through the internal barrier but 

with the field barrier   as well. This will force the system to decay. It is obvious that 

we must first combine the three regions L, ,R, by propagating from r1 to turning 

point d, and then combine regions  ,R, , by propagating from d to b, and then 

alternate the couple (L, ) with (R, ) in all possible ways. Finally we can propagate 

to point r2 through the couple (L, ) or by staying entirely at region L. Putting all 

these together we get:   
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In Table A2 that follows we have calculated the coupled regions propagation 

amplitudes of this category, in terms of fundamental amplitudes.  

 

 

   Amplitudes of the    

regions  L, , R  

            Function of Fundamental Amplitudes 
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TABLE A2. Calculation of the coupled regions ({R, }, {L, }, { ,L}) path 

integral  amplitudes in terms of fundamental amplitudes.  
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The field barrier   acquires a phase factor and forms the following barrier magnitude 

( )
( )exp

e
d

d
d

y dy e 
 


 
  
  

. Putting the above together and completing the tedious 

algebra, we finally get: 
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where quantity ρ is defined as  
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Again the symbol   that appears in eq. (18), means that we must actually sum two 

fractions, one for each sign. 

  

iv) Transition Amplitude , , , ,L R    

 

State 1 has already interacted with the total region on its right side, before reaching 

point a in order to interact with the second field barrier  . A second channel of decay 

appears now. Thus we need to modify all the previously calculated transition 

amplitudes in such a way that propagation ends at turning point a instead of r2. Thus 

we use the symbol +

1( ; )L R r a  to describe the sum of the previously calculated 

amplitudes for r2 = a. Modifying in this way the amplitudes we get: 
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PART C: Natural Sciences and Mathematics 

 

ISSN:1791-4469                               Copyright © 2022, Hellenic Naval Academy 

C-39 

      

      

      

 

1

1

1

1

1

1

1

, , , ( ; ) 1 1

                ( ; ) 1 1

1 ( ) ( ; ) ( ; ) 1 1

( ; ) 1

c c b c

r R c c b

c c d c

d c c d

c c b c

L r R c c b

L R
r a L A c d R R R

R A c b R R R

i A r b L A c d R R L

R A c b













 
          

   

        
   

          
   

      

       

1

1

1

1

1 1 1 ( ; )

c d c

c c d

c c b c b

b c c b b L

R R R

L R R L L A b a







 
 
 

          

           
     

    

                                                                                                                          (A-11) 

 

Obviously  
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The combination of the above with the field barrier  , according to our 

aforementioned directions, gives the following: 
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where a single propagation inside field barrier   acquires a phase factor that forms 

the following barrier magnitude 
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Putting all these together we get the total transition amplitude for propagation 

between points r1 and a in the following form  
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It is interesting to notice that the pole condition: +

11 ( ; ) ( ; ) 0L R r a A a a 

  , 

transforms the total amplitude in its much simpler form 
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APPENDIX B: 

 
Analytic calculation of  the energy poles of each propagation amplitude beyond  

that of region L. 
 

 

Regions L and   contribute with the extra pole term: 
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It is obvious however, that the complex denominator of the above fraction cannot be 

in any way equal to zero. Thus, we expand the denominator around the eigenvalues of 

the isolated unperturbed well. Doing so we find  
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Thus the perturbed eigenvalues become complex and equal to  
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where the subscript n denotes calculation on the eigenvalue En and where the symbol 
nE

d  denotes derivation with respect to the eigenvalue En. 

   

 

i)  Regions L,   and R contribute with two extra  pole terms (one for each 

sign):  
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The two fold signs that appear in the above formula translate to the doublet splitting 

that was previously described. Hence, we develop the denominator of the above 

fraction around the eigenvalues En of the unperturbed well, to get 
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   

        

 

2

, , ,

2 2

2, , , ,

,

, ,

( ) 1 ( )
2 4 2

( ) 1 ( ) ( ) ( )
2 2 4 4

( ) 1

n n

n n n n

n

E Eb n b n b n

E E E Eb n b n b n b n

b n

E

L R

n nZ

d b d b

i d b d b d b d b

d b

E

                   

  
 

   
    





    
     
    

 
    

       
    

 

 

       
2

2
2

, , ,

,
( ) ( ) ( )

4 2 2
n n nE E Eb n b n b n

b n
d b d b d b

  
   

   
   

   

   

                                                                                                                              (B-6) 

 

ii)  Regions , , ,L R  contribute with two extra  pole terms (one for each 

sign), coming through the fraction:  
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For once more, we develop the denominator around the eigenvalues En of the 

unperturbed well to get 
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Thus the perturbed eigenvalues become complex and equal to 
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iii) Regions , , ,L R and   contribute with two extra  pole terms, (one for 

each sign), arising through the following condition as this is induced by eq. 

(23):  
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We develop the above quantity around the eigenvalues En of the unperturbed wells 

and impose the: 
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Thus, once more the perturbed eigenvalues become complex and equal to 
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Abstract. In previous articles we derived a system of partial differential equations by 

means of which one may obtain expressions for the electromagnetic field in the interior 

and the exterior of a charging capacitor. In the present article a recursive process is 

described for finding solutions of this system in power-series form with respect to time. 

This allows one to find approximate solutions of Maxwell’s equations in a number of 

situations of physical interest.   

 

Keywords: Maxwell’s equations, Faraday’s law, charging capacitor  

 

 

1.  Introduction 
 

In previous articles [1,2] we described a mathematical process for finding expressions 

for the electromagnetic (e/m) field – i.e., solutions of Maxwell’s equations – in the 

interior and the exterior of a charging capacitor. These solutions generalize the 

“classical” results found in the educational literature of electrodynamics [3-9], which 

results were noted to not satisfy, in general, the Faraday-Henry law (Maxwell’s third 

equation).  

      Our method was based on a simple idea: we started with the known (incomplete) 

solutions and “corrected” them by adding unknown functions to be determined by 

using the Maxwell system. This led to a system of partial differential equations 

(PDEs) for these functions, in which system the (generally) time-dependent current 

that charges the capacitor appears as a sort of parametric function.  

      In the present article we suggest a mathematical process for obtaining solutions of 

the aforementioned system of PDEs in the form of power series with respect to time. 

This allows one to find approximate expressions for the e/m field in certain situations. 

For example, a slowly varying (thus almost time-independent) current allows for the 

“classical” solutions given in the literature, while a current that is almost linearly 

dependent on time (as may be assumed, in general, for any smoothly varying current 

in a very short time period) allows for new solutions that correct the standard 

expressions for the electric field while retaining the corresponding expressions for the 

magnetic field.  

      It should be noted that, regarding the solutions in the exterior of the capacitor, no 

retardation effects related to the finite speed of propagation of e/m interactions will 

concern us here. Indeed, as discussed in Sec. 4, our solutions are valid at points of 
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space not far from the capacitor, so that any change in the physical system will be felt 

“simultaneously” at all points of interest. 

 

 

 

 

2.   Solutions of Maxwell’s equations inside the capacitor 
 

We consider a parallel-plate capacitor with circular plates of radius a, thus of area 

A=πa
2
. The space in between the plates is assumed to be empty of matter. The 

capacitor is being charged by a time-dependent current I(t) flowing in the +z direction 

(see Fig. 1). The z-axis is perpendicular to the plates (the latter are therefore parallel 

to the xy-plane) and passes through their centers, as seen in the figure (by ˆ
zu  we 

denote the unit vector in the +z direction).  

I I

QQ

ˆ
zu

z

 
 

Figure 1 

 

      The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on 

the right plate (as seen in the figure) at time t. If σ(t)=Q(t)/πa
2
=Q(t)/A is the surface 

charge density on the right plate, then the time derivative of σ is given by  

 

        
( ) ( )

( )
Q t I t

t
A A




               (1) 

 

      We assume that the plate separation is very small compared to the radius a, so that 

the e/m field inside the capacitor is practically independent of z, although it does 

depend on the normal distance ρ from the z-axis. In cylindrical coordinates (ρ, φ, z) the 

magnitude of the e/m field at any time t will thus only depend on ρ (due to the 

symmetry of the problem, this magnitude will not depend on the angle φ).  

      We assume that the positive and the negative plate of the capacitor of Fig. 1 are 

centered at z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the 

plate separation d is much smaller than the radius a of the plates. The interior of the 

capacitor is then the region of space with  0  ρ < a  and  0 < z < d.  

      The magnetic field inside the capacitor is azimuthal, of the form ˆ( , )B B t u . A 

standard practice in the literature is to assume that, at all t, the electric field in this 

region is uniform, of the form  

 

        
0

( )
ˆ

z

t
E u




                 (2) 

 

while everywhere outside the capacitor the electric field vanishes. With this 

assumption the magnetic field inside the capacitor is found to be [4,5,8]  
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        0 0

2

( ) ( )
ˆ ˆ

22

I t I t
B u u

Aa
 

   


               (3) 

 

      Expressions (2) and (3) must, of course, satisfy the Maxwell system of equations 

in empty space, which system we write in the form [3,10]  

        

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


    




   



           (4) 

 

By using cylindrical coordinates (see Appendix I) and by taking (1) into account, one 

may show that (2) and (3) satisfy three of Eqs. (4), namely, (a), (b) and (d). This is not 

the case with the Faraday-Henry law (4c), however, since by (2) and (3) we find that 

0E  , while  

 

        0 ( )
ˆ

2

I tB
u

t A


 



 .  

 

An exception occurs if the current I is constant in time, i.e., if the capacitor is being 

charged at a constant rate, so that I΄(t)=0. This is actually the assumption silently or 

explicitly made in many textbooks (see, e.g., [4], Chap. 21). But, for a current I(t) 

with arbitrary time dependence, the pair of fields (2) and (3) does not satisfy the third 

Maxwell equation.  

      To remedy the situation and restore the validity of the full set of Maxwell’s 

equations in the interior of the capacitor, we must somehow correct the above 

expressions for the e/m field. To this end we employ the following Ansatz, taking into 

account Lemma 1 in Appendix II:  

 

        

0

0

( )
ˆ( , ) ,

( )
ˆ( , ) ;

2

( ) ( ) /

z

t
E f t u

I t
B g t u

A

t I t A








 




 
  
 

 
  
 

 

             (5) 

 

where f (ρ,t) and g(ρ,t) are functions to be determined consistently with the given 

current function I(t) and the given initial conditions. It can be checked that the 

solutions (5) automatically satisfy the first two Maxwell equations (4a) and (4b). By 

the Faraday-Henry law (4c) and the Ampère-Maxwell law (4d) we get the following 

system of PDEs:  
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0

0 0

( )

2

1 ( )

I tf g

t A

g f

t

 




 

 

 
 

 

 


 

               (6) 

 

Note in particular that the “classical” solution with f (ρ,t)0 and g(ρ,t)0 is possible 

only if I΄(t)=0, i.e., if the current I is constant in time, which means that the capacitor 

is being charged at a constant rate.  

      The quantity (1/ρ)(ρg)/ρ in the second equation, having its origin at the 

expression for B  in cylindrical coordinates, must tend to a finite limit for ρ0 in 

order that the rot of the magnetic field be finite at the center of the capacitor. For this 

to be the case, (ρg)/ρ must only contain terms of at least first order in ρ. This, in 

turn, requires that g itself must be of at least first order (i.e., linear with no constant 

term) in ρ for all t, or else g must be identically zero. We must, therefore, require that  

 

        g (ρ,t)  0  for  ρ0              (7) 

 

for all t. Keeping this condition in mind, we can rewrite the system (6) in a more 

symmetric form:  

 

        

0

0 0

( )

2

( ) ( )

I tf g

t A

g f

t

 



 
 



 
 

 

 


 

              (8) 

 

      In principle, one needs to solve the system (8) for a given current I(t) and for 

given initial conditions. An alternative approach, leading to approximate solutions of 

various forms, is to expand all functions (i.e., f, g and I) in powers of time, t. We thus 

write:  

 

        
0

( ) n
n

n

I t I t




                                     (9a) 

        
0

( , ) ( ) n
n

n

f t f t 




                          (9b) 

        
0

( , ) ( ) n
n

n

g t g t 




                          (9c) 

 

Then, for example,  

 

        
1

1

1 0

( ) ( 1)n n
n n

n n

I t nI t n I t
 




 

     ,  etc.  

 

Obviously, In has dimensions of current  (time)
–n

, while fn and gn have dimensions of 

field intensity (electric and magnetic, respectively)  (time)
–n

.  
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      Substituting the series expansions (9) into the system (8), and equating 

coefficients of similar powers of t on both sides of the ensuing equations, we get a 

recursion relation in the form of a system of PDEs:  

 

        

 

0

1 1

0 0 1

( ) ( 1) ( )
2

( ) ( 1) ( )

n n n

n n

f n g I
A

g n f

 
 

     

 



 
    

 

  

                       (10) 

 

for n=0,1,2,... All non-vanishing functions gn(ρ) are required to satisfy the boundary 

condition (7); i.e., gn(ρ)0 for  ρ0.  

      An obvious solution of the system (10) is the trivial solution fn(ρ)0 and gn(ρ)0 

for all n=0,1,2,..., corresponding to f(ρ,t)0 and g(ρ,t)0. For this to be the case, we 

must have In+1=0 for all n=0,1,2,..., which means that I(t)=I0=constant (independent 

of t). This is the case typically treated in the literature, although the condition I=const. 

is usually not stated explicitly.  

      The simplest nontrivial solution of the problem is found by assuming that f and g 

are time-independent, i.e., are functions of ρ only. Then, by (9b) and (9c), f=f0(ρ) and 

g=g0(ρ), while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (10) for n=0 gives  

 

         0 1

0 0( ) and ( ) 0
2

I
f g

A

 
           

 

with solutions  

 

        

2
0 1

0 ( )
4

I
f C

A

 
      and   0 ( )g





  ,     

 

respectively. The boundary condition g0(ρ)0 for  ρ0 cannot be satisfied for λ0; 

we are thus compelled to set λ=0. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution 

of the system (8) is  

 

        

2
0 1

( , ) , ( , ) 0
4

I
f t C g t

A

 
                        (11) 

 

      As is easy to check, by the first of Eqs. (10) it follows that In=0 for n>1. Therefore 

I(t) is linear in t, i.e., is of the form I(t)=I0+I1t. By assuming the initial condition 

I(0)=0, we have that I0=0 and  

 

        I(t) = I1 t                           (12) 

 

On the other hand, by integrating Eq. (1): σ΄(t)=I(t)/A, and by assuming that the 

capacitor is initially uncharged [σ(0)=0], we get:  

 

        

2
1

( )
2

I t
t

A
                           (13) 
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      Finally, by Eqs. (5), (11), (12) and (13) the e/m field in the interior of the 

capacitor is  

 

        

2 2
1 0 1

0

0 1

ˆ ,
2 4

ˆ
2

z

I t I
E u

A A

I t
B u

A


 



 

 
  
 
 



                       (14) 

 

where we have set C=0 since, in view of the assumed initial conditions, there is no 

electric field inside the capacitor if I1=0. In order for the solution (14) to be valid, the 

current I(t) charging the capacitor must vary linearly with time, according to (12).  

 

 

3.   Solutions of Maxwell’s equations outside the capacitor 
 

We recall that the positive and the negative plate of the capacitor of Fig. 1 are 

centered at z=0 and z=d, respectively, on the z-axis, where the plate separation d is 

much smaller than the radius a of the plates. The space exterior to the capacitor 

consists of points with  ρ > 0  and  z(0,d ), as well as points with  ρ > a  and  0 < z < d. 

(In the former case we exclude points on the z-axis, with ρ=0, to ensure the finiteness 

of our solutions in that region.) We assume that the current I(t) is of “infinite” extent 

and hence the magnitude of the e/m field is practically z-independent.  

      The e/m field outside the capacitor is usually described mathematically by the 

equations [4,5,8]  

 

        0 ( )
ˆ0 ,

2

I t
E B u




                         (15) 

 

As the case is with the standard solutions in the interior of the capacitor, the solutions 

(15) fail to satisfy the Faraday-Henry law (4c) (although they do satisfy the remaining 

three Maxwell equations), since 0E   while  

 

        0 ( )
ˆ

2

I tB
u

t










 .       

 

As before, an exception occurs if the current I is constant in time, i.e., if the capacitor 

is being charged at a constant rate, so that I΄(t)=0.  

      To find more general solutions that satisfy the entire set of the Maxwell equations, 

we work as in the previous section. Taking into account Lemma 2 in Appendix II, we 

assume the following general form of the e/m field everywhere outside the capacitor:  

 

        
0

ˆ( , ) ,

( )
ˆ( , )

2

zE f t u

I t
B g t u










 
  
 

                        (16) 
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where f and g are functions to be determined consistently with the given current 

function I(t). The solutions (16) automatically satisfy the first two Maxwell equations 

(4a) and (4b). By Eqs. (4c) and (4d) we get the following system of PDEs:  

 

        

0

0 0

( )

2

( ) ( )

I tf g

t

g f

t



 

 
 



 
 

 

 


 

                          (17) 

 

Again, the usual solution with f (ρ,t)0 and g(ρ,t)0 is possible only if I΄(t)=0, i.e., if 

the capacitor is being charged at a constant rate. Note also that, since now ρ0, the 

boundary condition (7) for g no longer applies.  

      As we did in the previous section, we seek a series solution of the system (17) in 

powers of t. We thus expand f, g and I as in Eqs. (9), substitute the expansions into the 

system (17), and compare terms with equal powers of t. The result is a new recursive 

system of PDEs:  

 

        

 

0
1 1

0 0 1

( ) ( 1) ( )
2

( ) ( 1) ( )

n n n

n n

f n g I

g n f


 


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 



     
 
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                     (18) 

 

for n=0,1,2,... Again, an obvious solution is the trivial solution fn(ρ)0 and gn(ρ)0 for 

all n=0,1,2,..., corresponding to f(ρ,t)0 and g(ρ,t)0. This requires that In+1=0 for all 

n=0,1,2,..., so that I(t)=I0=constant (independent of t).  

      As in Sec. 2, we seek time-independent solutions for f and g, so that f=f0(ρ) and 

g=g0(ρ) while fn(ρ)=0 and gn(ρ)=0 for n>0. The system (18) for n=0 gives  

 

         0 1

0 0( ) and ( ) 0
2

I
f g


  


       

 

with solutions  

 

        
0 1

0 ( ) ln( )
2

I
f


 


    and   0 ( )

2
g





  ,     

 

respectively (remember that ρ>0), where κ is a positive constant quantity having 

dimensions of inverse length, and where a factor of 2π has been put in g0(ρ) for future 

convenience. Given that f(ρ,t)=f0(ρ) and g(ρ,t)=g0(ρ), the solution of the system (17) 

is  

 

        
0 1

( , ) ln( ) , ( , )
2 2

I
f t g t

 
  

 
                      (19) 

 

      By the first of Eqs. (18) it follows that In=0 for n>1. Therefore I(t) is linear in t, of 

the form I(t)=I0+I1t. By assuming the initial condition I(0)=0, we have that I0=0 and  
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        I(t) = I1 t                           (20) 

 

In view of the above results, the e/m field (16) in the exterior of the capacitor is  

 

        

0 1

0 1

ˆln( ) ,
2

ˆ
2

z

I
E u

I t
B u






 








                      (21) 

 

For this solution to be valid, the current I(t) must vary linearly with time.  

      By comparing Eqs. (14) and (21) we observe that the value of the electric field 

inside the capacitor does not match the value of this field outside for ρ=a, where a is 

the radius of the capacitor. This discontinuity of the electric field at the boundary of 

the space occupied by the capacitor is a typical characteristic of capacitor problems, in 

general. On the other hand, in order that the magnetic field in the strip 0 < z < d be 

continuous for ρ=a, the expression for B  in (21) must match the corresponding 

expression in (14) upon substituting ρ=a and by taking into account that A=πa
2
. This 

requires that we set λ=0 in (21), so that this equation finally becomes  

 

        

0 1

0 1

ˆln( ) ,
2

ˆ
2

z

I
E u

I t
B u














                      (22) 

 

 

 

4.   Discussion 
 

As we have seen, expressions for the e/m field inside and outside a charging capacitor 

may be sought in the general form given by Eqs. (5) and (16), respectively. These 

expressions contain two unknown functions f(ρ,t) and g(ρ,t) which, in view of 

Maxwell’s equations, satisfy the systems of PDEs (8) and (17). These PDEs, in turn, 

admit series solutions in powers of t, of the form (9), where it is assumed that the 

current I(t) itself may be expanded in this fashion.  

      The coefficients of expansion of f and g may be determined, in principle, by 

means of the recursion relations (10) and (18), both of which are of the general form  

 

        
 

 

1 1

0 0 1

( ) ( 1) ( ) ( )

( ) ( 1) ( )

n n n

n n

f n g h I

g n f

  

     

 



   

  

                     (23) 

 

This is not an easy system to integrate, so we are compelled to make certain ad hoc 

assumptions. Suppose, e.g., that we seek a solution such that fn(ρ)=0 and gn(ρ)=0 for 

n>k (k0). It then follows from the first of Eqs. (23) that In+1=0 for n>k or, 

equivalently, In=0 for n>k+1. Thus, if k=0, I(t) must be linear in t; if k=1, I(t) must be 

quadratic in t; etc.  
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      For a current varying sufficiently slowly with time, we may approximately assume 

that In=0 for n>0, so that I(t)=I0=const. This allows for the possibility that f and g 

vanish identically, as is effectively assumed (though not always stated explicitly) in 

the literature. On the other hand, any smoothly varying I(t) may be assumed to vary 

linearly with time for a very short time period. Then, a solution of the form (14) and 

(22) is admissible.  

      There are several aspects of the solutions described by Eqs. (14) and (22) that may 

look unphysical: (a) the electric field in (22) apparently diverges for ρ; (b) the 

magnetic field in both (14) and (22) diverges for t; (c) although, by assumption, 

there are no charges at the interface between the interior and the exterior of the 

capacitor (i.e., on the cylindrical surface defined by 0< z < d and ρ=a) the electric field 

is non-continuous on that surface, contrary to the general boundary conditions 

required by Maxwell’s equations; (d) the constant κ in (22) appears to be arbitrary. 

We may thus use the above solutions only as approximate ones for values of ρ not 

much larger than the radius a of the plates, as well as for short time intervals. (Note 

that ρ has to be much smaller than the length of the wire that charges the capacitor if 

this wire is to be considered of “infinite” length, hence if the external e/m field is to 

be regarded as z-independent.) We may smoothen the discontinuity problem of the 

electric field for ρ=a by assuming that this field is continuous at t=0, i.e., at the 

moment when the charging of the capacitor begins. By setting ρ=a in (14) and (22) 

and by equating the corresponding expressions for E  we may then determine the 

value of the constant κ in (22). The result is:  κ=e
1/2

/a.  

      For an enlightening discussion of the subtleties concerning the e/m field produced 

by an infinitely long straight current, the reader is referred to Example 7.9 of [3].  

 

 

 

 

 

Appendix I. Vector operators in cylindrical coordinates 

 

 
 

Let A  be a vector field, expressed in cylindrical coordinates (ρ, φ, z) as  

 

        ˆ ˆ ˆ( , , ) ( , , ) ( , , )z zA A z u A z u A z u            . 

 

The div and the rot of this field in this system of coordinates are written, respectively, 

as follows:  

 

        
1 1

( ) z
A A

A A
z




   

 
   

  
 , 

 

        
1 1

ˆ ˆ ˆ( )z z
z

A A AA A
A u u A u

z z

  
  

     

         
           

          
 . 
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In particular, if the vector field is of the form  

 

        ˆ ˆ( ) ( )z zA A u A u     ,    

 

then  0A  .   

 

 

 

 

Appendix II. General form of the electric field 

 
 

To justify the general expression for the electric field implied in the Ansatz (5) used to 

find solutions of Maxwell’s equations inside the capacitor, we need to prove the 

following:  

 

      Lemma 1. If the magnetic field inside the capacitor is azimuthal, of the form  

 

        ˆ( , )B B t u                         (A.1) 

 

then the electric field (also assumed dependent on ρ and t) is of the form  

 

        ˆ( , ) zE E t u                         (A.2) 

 

      Proof. Let  

 

        ˆ ˆ ˆ( , ) ( , ) ( , )z zE E t u E t u E t u                          (A.3)    

 

Then (cf. Appendix I) from Gauss’ law (4a) it follows that  

 

        
( )

( ) 0
t

E E 




 


  


                      (A.4) 

 

In order for the electric field to be finite at the center of the capacitor (i.e., for ρ=0) 

we must set α(t)0, so that Eρ(ρ,t)=0. On the other hand, the z-component of 

Faraday’s law (4c) yields  

 

        
( )

( ) 0
t

E E 




 


  


                     (A.5) 

 

Again, finiteness of the electric field for ρ=0 dictates that β(t)0, so that Eφ(ρ,t)=0. 

Eventually, only the z-component of the electric field is non-vanishing, in accordance 

with (A.2).  

 

      The solutions outside the capacitor are subject to the restriction ρ>0. The 

expression for the electric field implied in the Ansatz (16) is based on the following 

observation:  
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      Lemma 2. If the magnetic field outside the capacitor is azimuthal, of the form 

(A.1), then the electric field (also assumed dependent on ρ and t) is again of the form 

(A.2).  

 

      Proof. Let the electric field be of the form (A.3). Then from Gauss’ law (4a) and 

from the z-component of Faraday’s law (4c) we get (A.4) and (A.5), respectively. On 

the other hand, from the ρ- and φ-components of the fourth Maxwell equation (4d) we 

find that Eρ/t=0 and Eφ/t=0, which means that α and β are actually constants. 

Thus the general form of the electric field outside the capacitor should be  

 

        ˆ ˆ ˆ( , ) zE u u f t u 

 


 
    .     

 

Obviously, the function f (ρ,t) is related to the time-change of the magnetic field and is 

expected to vanish if the current I that charges the capacitor is constant. If the electric 

field itself is to vanish when I=constant, both constants α and β must be zero. 

Eventually, the electric field outside the capacitor must be of the general form (A.2).  
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Abstract. The problem we consider is to find (the) best approximation(s) to a 

given function simultaneously with respect to more than one criterion of 

proximity. Questions of existence, characterization, unicity and computation are 

examined. Examples are given. 

Keywords: Best vectorial approximation(s), minimal projection norms, 

computational schemata 

 

1. INTRODUCTION 

Among other formulations of simultaneous approximation, the notion of a 

"Vectorially Minimal Approximation” is introduced, which is shown to be the 

natural setting for problems of simultaneity, both theoretically as well as 

computationally. For the above formulations of Multicriteria Optimization we propose 

3 types of "models" and show their interrelationships in each "primal" and "dual" 

spaces. In particular, attention has been given to effective models suitable for 

numerical computation. A related problem situated in the "dual space” of 

approximation operators is to approximate the (non-linear) best approximation 

operator by projection operators. This approach, as a tool of “good” approximation 

of functions (in situations to be specified), is motivated by the following inequality, 

where the role of minimal projections, i.e.        is self-explanatory. 
 

                                        
 

Here again the approximation in the operator space is done simultaneously with 

respect to several norms. As just indicated, this reduces to finding “simultaneously” 

minimal projection norms. Examples are given and a “Zero in the Convex Hull” as 

well as a “Kolmogorov-type” characterization theorems are presented. 
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The tools used in this presentation are Elementary Optimization Theory, 

Computational Numerical Analysis and Elementary Functional Analysis. 
 

 
 
 

2. VECTORIAL APPROXIMATION 

Let           be two norms defined on a linear space   and let           be a given 

function to be approximated by approximation          .   is assumed to be a 

closed, convex, proper subset of  . Let                   
           

  and 

define the partial ordering   on      by 

           

             

   
             

  

 

We shall write           if and only if            and          .  

 

Definition 2.1  

We say that   is a best vec approximation if there does not exist a       such that 

         . 

 

Definition 2.2 

The minimal set   is given by 

                                            . 
 

There are some general geometric facts that are easy to verify. We cite some of them 

here:  

          has zero homotopy group.  

   is a convex, decreasing arc. 

 

Let   is the     

 

bisector of the             orthogonal axes.   is the supporting line to 

     which makes      angle with      axes. 
The proof of the following theorem is a consequence of the definitions, convexity and, in 

the case of          , the continuity of the best approximation operator.     here 

denotes the sum of two norms.     means the maximum of two norms. 

 

Theorem 2.1 

Let    be a best     approximation. Then          . Similarly, if    denotes the 

best     approximation then           (assuming       ).  

 

Furthermore, we define the set   by  

         
   

            
   

        

where,  
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Theorem 2.2 

An element     is a best vectorial approximation if and only if there exists     and 

                 

        

                
and 

           for all     satisfying           
 

 

3. VECTORIALY MINIMAL PROJECTIONS  

Let          be the space of all linear operators from a real or complex space   

into a finite-dimensional subspace  , and let   be the family of all operators in   with 

a given fixed action on   (e.g., the identity action corresponds to the family of 

projections onto  ). Let   be equipped with norms                . Let    denote 

the normed space given by Χ with the norm      , and define  

                         
Define the partial ordering     on   by  

 

                                       
We write         if and only if         and          
 

Definition 3.1  

For      let      denote the operator norm on     let 

                         and define the partial ordering     on    by  

                                       
We write         if and only if         and        . 

  is a vectorially minimal operator in   if there no exist     such that      
   . 

 

Notation 

The minimal set   is given by  

                                                     
 

Definition 3.2 

For                     
        

   will be called an extremal pair for    , 

if    
           , where   

      
     is the second adjoint extension of   to 

   
     

(  denotes the unit sphere). 
 

Notation 

Let      be the set of all extremal pairs for  . To each          associate the rank-

one operator     from    to   
   given by                 for     , where   is 

the subscript associated with      . 

 

Theorem 3.1 (Characterization) 

   has vectorially minimal norm in   if and only if the closed convex hull of 

                contains an operator    for which   is an invariant subspace, i.e.  
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Theorem 3.2  

   has vectorially minimal norm in   if and only if there does not exist  

                   such that  

   
          

     
                             

 

 

4. SOME SPECIAL CASES  

We give some examples of Theorem 2.2.  In the notation of this theorem, let 

        ,  
          (the set of polynomials on       of degree less than or equal to   ) ,     

is the supremum norm on       and               two (weight) functions, positive 

and continuous on      . 
We introduce extreme points, for a given          to be approximated, in 

connection with the next theorem, as follows: 

 

 
  

                                       

 
  

                                       

 
   

                                       

 
   

                                        

 

 
 

  
  

    
  

   
  

  
  

 

The sign function      on  
 
 is defined by  

 

                
   

  
   

 

and  

 

                
  

  
  

  

 

Theorem 4.1 (Application) 

Consider the Vectorial Chebyshev optimization, with   
 
and   

 
as defined above. 

Then   is a best vec approximation to   if and only if there exist     points 

              
 
        satisfying 

 

                                           
 

 

Theorem 4.2 

Each best vec approximation is unique; i.e. given      there is only one   
       

 
such that  

      .  
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Note that this uniqueness does not contradict the fact that the minimal set   has, in 

general, an infinite number of points, each of which corresponds to a (unique) best 

vectorial approximation. Likewise, the easily shown existence of   proves the 

existence of best solutions. 

 

Theorem 4.3 (Application) 

Let                                   the     and    norms on        which 

we denote by         and        respectively.  

Find the best vectorial approximation    whose error in Chebyshev norm equals a 

prescribed value     ,                      . It is clear that the desired 

polynomial    is the unique solution to the problem  

   
    

       

subject to  

           
 

Since the number of constraints here is infinite, we proceed by solving a sequence of 

quadratic programming problems, each with a finite number of constraints. The 

sequence of solutions       is shown to converge to the theoretical solution     
 

Algorithm Corresponding to Theorem 4.3 

At the      step we have from the preceding steps a finite set of points    
       We solve the quadratic program  

   
    

       

 

subject to  

                      
Denoting by    the solution of this problem, we calculate a point          such that 

                          
We form              and proceed to the next cycle. At the beginning    may 

be an arbitrary finite set, containing a maximum of              . 
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