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    Abstract. The charging capacitor is used as a standard paradigm for illustrating the concept 

of the Maxwell “displacement current”. A certain aspect of the problem, however, is often 

overlooked. It concerns the conditions for satisfaction of the Faraday-Henry law both in the 

interior and the exterior of the capacitor. In this article the situation is analyzed and a 

mathematical process is described for obtaining expressions for the electromagnetic field that 

satisfy the full set of Maxwell’s equations both inside and outside the capacitor.  
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1.  Introduction 
 

The charging capacitor is the standard paradigm used in intermediate-level Physics courses, 

textbooks and articles to demonstrate the significance of the Maxwell “displacement current” 

(see, e.g., [1-7]). The point is correctly made that, without this “current” term, the static 

Ampère’s law would be incomplete with regard to explaining the conservation of charge as well 

as the existence of electromagnetic radiation. Also, the line integral of the magnetic field around 

a closed curve would be an ill-defined concept.  

      There is, however, a certain subtlety of the situation which is often passed by. It concerns the 

satisfaction of the Faraday-Henry law both inside and outside the capacitor. Indeed, although 

care is taken to ensure that the expressions used for the electromagnetic (e/m) field satisfy the 

Ampère-Maxwell law, no such care is exercised with regard to the Faraday-Henry law. As it 

turns out, the usual formulas for the e/m field satisfy this latter law only in the special case where 

the capacitor is being charged at a constant rate. But, if the current responsible for charging the 

capacitor is time-dependent, this will also be the case with the magnetic field outside the 

capacitor. This, in turn, implies the existence of an “induced” electric field in that region, 

contrary to the usual assertion that the electric field outside the capacitor is zero. Moreover, the 

time dependence of the magnetic field inside the capacitor is not compatible with the assumption 

that the electric field in that region is uniform, as the case would be in a static situation.  

      The purpose of this article is to exhibit the theoretical inconsistencies inherent in the 

“classical” treatment of the charging capacitor problem and to describe a mathematical process 
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for deriving expressions for the e/m field that satisfy the full set of the Maxwell equations 

(including, of course, the Faraday-Henry law) both inside and outside the capacitor.  

      After a preliminary discussion of the concept of the electric current through a loop (Section 

2), the standard “textbook” approach to the charging-capacitor example in connection with the 

concept of the displacement current is presented in Section 3. New and more general solutions of 

the Maxwell system of equations in the interior and the exterior of the capacitor are then derived 

in Sections 4 and 5, respectively.  

 

 

2.  The current through a loop 
 

Before we proceed to write the Ampère-Maxwell law in its integral form, we must carefully 

define the concept of the total current through a loop C (where by “loop” we mean a closed 

curve in space).  

      Proposition. Consider a region R of space within which the distribution of charge, expressed 

by the volume charge density ρ, is time-independent (ρ/t=0). Let C be an oriented loop in R, 

and let S be any open surface in R bordered by C and oriented accordingly. We define the total 

current through C as the surface integral of the current density J  over S :  

 

                                                          in
S

I J da              (1) 

 

Then, the quantity Iin has a well-defined value independent of the particular choice of S (that is, 

Iin is the same for all open surfaces S bounded by C ).  

      Proof. By the equation of continuity for the electric charge (see, e.g., [8], Chap. 6) and by the 

fact that the charge density ρ inside the region R is static (ρ/t=0), we have that 0J  . 

Therefore, within this region of space the current density has the properties of a solenoidal field. 

In particular, the value of the surface integral of J  will be the same for all open surfaces S 

sharing a common border C.  

      As an example, let us consider a circuit carrying a time-dependent current I(t). If the circuit 

does not contain a capacitor, no charge is piling up at any point and the charge density at any 

elementary segment of the circuit is constant in time. Moreover, at each instant t, the current I is 

constant along the circuit, its value changing only with time. Now, if C is a loop encircling some 

section the circuit, as shown in Fig. 1, then, at each instant t, the same current I(t) will pass 

through any open surface S bordered by C. Thus, the integral in (1) is well defined for all t, 

assuming the same value Iin=I(t) for all S.  

 

I I

C S

 
 

Figure 1 
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      Things change if the circuit contains a capacitor which is charging or discharging. It is then 

no longer true that the current I(t) is constant along the circuit; indeed, I(t) is zero inside the 

capacitor and nonzero outside. Thus, the value of the integral in (1) depends on whether the 

surface S does or does not contain points belonging to the interior of the capacitor.  

 

 

3.  Maxwell displacement current in a charging capacitor 
 

Figure 2 shows a simple circuit containing a capacitor that is being charged by a time-

dependent current I(t). At time t, the plates of the capacitor, each of area A, carry charges Q(t).  

 

I I

C

1S

2S

QQ

û

 

Figure 2 

 

      Assume that we encircle the current I by an imaginary plane loop C parallel to the positive 

plate and oriented in accordance with the “right-hand rule”, consistently with the direction of I 

(this direction is indicated by the unit vector û ). The “current through C ” is here an ill-defined 

notion since the value of the integral in Eq. (1) is Iin=I for the flat surface S1 and Iin=0 for the 

curved surface S2 (Fig. 2). This, in turn, implies that Ampère’s law of magnetostatics [1-4,8] 

cannot be valid in this case, given that, according to this law, the integral of the magnetic field B  

along the loop C, equal to μ0Iin , would not be uniquely defined but would depend on the surface 

S bounded by C.  

      Maxwell restored the single-valuedness of the closed line integral of B  by introducing the 

so-called displacement current, which is essentially the rate of change of a time-dependent 

electric field:  

 

                         0 0d d d
S S

E E
J I J da da

t t
 

 
     

           (2) 

 

The Ampère-Maxwell law reads:  
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0 0 0

0 0 0 0 ( )in d in
C S

E
B J

t

E
B dl I da I I

t

  

   


   




     

 

        (3) 

 

where Iin is given by Eq. (1).  

      Now, the standard “textbook” approach to the charging capacitor problem goes as follows: 

Outside the capacitor the electric field vanishes everywhere, while inside the capacitor the 

electric field is uniform – albeit time-dependent – and has the static-field-like form  

 

                                                    
0 0

( ) ( )
ˆ ˆ

t Q t
E u u

A



 
            (4) 

 

where σ(t)=Q(t)/A is the surface charge density on the positive plate at time t. This density is 

related to the current I, which charges the capacitor, by  

 

                                                    
( ) ( )

( )
Q t I t

t
A A




               (5) 

 

(the prime indicates differentiation with respect to t). Thus, inside the capacitor,  

 

                                                 
0 0

( ) ( )
ˆ ˆ

E t I t
u u

t A



 


 


            (6) 

 

Outside the capacitor the time derivative of the electric field vanishes everywhere and, therefore, 

so does the displacement current.  

      Now, on the flat surface S1 the total current through C is (I+Id)in = I+0 = I(t). The Ampère-

Maxwell law (3) then yields:  

 

                                                     0 ( )
C

B dl I t             (7) 

 

On the curved surface S2 , the total current through C is (I+Id)in = 0+Id,in = Id,in , where the quantity 

on the right assumes a nonzero value only for the portion S2΄ of S2 which lies inside the capacitor. 

This quantity is equal to  

 

                                    
2 2

, 0

( )
ˆ

d in
S S

E I t
I da u da

t A


 


   

          (8) 
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2S

da
û

ˆda u da  
plate of area 

  (side view)

A

Q

û

 

Figure 3 

 

The dot product in the integral on the right of (8) represents the projection of the surface element 

da  onto the axis defined by the unit vector û  (see Fig. 3). This is equal to the projection da of 

an elementary area da of S2΄ onto the flat surface of the plate of the capacitor. Eventually, the 

integral on the right of (8) equals the total area A of the plate. Hence, Id,in=I(t) and, given that 

Iin=0 on S2 , the Ampère-Maxwell law (3) again yields the result (7).  

      So, everything works fine with regard to the Ampère-Maxwell law, but there is one law we 

have forgotten so far; namely, the Faraday-Henry law! According to that law, a time-changing 

magnetic field is always accompanied by an electric field (or, as is often said, “induces” an 

electric field). So, the electric field outside the capacitor cannot be zero, as claimed previously, 

given that the time-dependent current I(t) is expected to generate a time-dependent magnetic 

field. For a similar reason, the electric field inside the capacitor cannot have the static-field-like 

form (4) (there must also be a contribution from the rate of change of the magnetic field between 

the plates).  

      An exception occurs if the current I which charges the capacitor is constant in time, since in 

this case the magnetic field will be static everywhere. This is actually the assumption silently or 

explicitly made in many textbooks (see, e.g., [2], Chap. 21). Physically this means that the 

capacitor is being charged at a constant rate. But, in the general case where I(t)constant, the 

preceding discussion regarding the charging capacitor problem needs to be significantly revised 

in order to take into account the entire set of the Maxwell equations; in particular, the Ampère-

Maxwell law as well as the Faraday-Henry law.  

 

 

4.  The Maxwell equations inside the capacitor 

 
We consider a parallel-plate capacitor with circular plates of radius a, thus of area A=πa

2
. The 

space in between the plates is assumed to be empty of matter. The capacitor is being charged by a 

time-dependent current I(t) flowing in the +z direction. The z-axis is perpendicular to the plates 

(the latter are therefore parallel to the xy-plane) and passes through their centers, as seen in Fig. 4 

(by ˆzu  we denote the unit vector in the +z direction).  
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I I

QQ

ˆ
zu

z

 
 

Figure 4 

 

      The capacitor is being charged at a rate dQ/dt=I(t), where +Q(t) is the charge on the right 

plate (as seen in the figure) at time t. If σ(t)=Q(t)/πa
2
=Q(t)/A is the surface charge density on the 

right plate, then the time derivative of σ is given by Eq. (5).  

      We assume that the plate separation is very small compared to the radius a, so that the 

electromagnetic (e/m) field inside the capacitor is practically independent of z, although it does 

depend on the normal distance ρ from the z-axis. (We will not be concerned with edge effects, 

thus we will restrict out attention to points that are not too close to the edges of the plates.) In 

cylindrical coordinates (ρ, φ, z) the magnitude of the e/m field at any time t will thus only depend 

on ρ (it will not depend on the angle φ, as follows by the symmetry of the problem).  

      We assume that the positive and the negative plate of the capacitor of Fig. 4 are centered at 

z=0 and z=d, respectively, on the z-axis, where, as mentioned above, the plate separation d is 

much smaller than the radius a of the plates. The interior of the capacitor is then the region of 

space with  0  ρ < a  and  0 < z < d.  

      The magnetic field inside the capacitor is azimuthal, of the form ˆ( , )B B t u . As noted in 

Sec. 3, a standard practice is to assume that, at all t, the electric field in this region is uniform, of 

the form  

 

                                                          
0

( )
ˆ

z

t
E u




                  (9) 

 

while everywhere outside the capacitor the electric field vanishes. With this assumption the 

magnetic field inside the capacitor is found to be [2,3,6]  

 

                                         0 0

2

( ) ( )
ˆ ˆ

22

I t I t
B u u

Aa
 

   


                       (10) 

 

      Expressions (9) and (10) must, of course, satisfy the Maxwell system of equations in empty 

space, which system we write in the form [1,8]  

 

                           

0 0

( ) 0 ( )

( ) 0 ( )

B
a E c E

t

E
b B d B

t
 


    




   



                 (11) 
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By using cylindrical coordinates (see Appendix) and by taking into account that σ΄(t)=I(t)/A [Eq. 

(5)], it is not hard to show that (9) and (10) satisfy three of Eqs. (11), namely, (a), (b) and (d). 

This is not the case with the Faraday-Henry law (11c), however, since by (9) and (10) we find 

that 0E  , while  

 

0 ( )
ˆ

2

I tB
u

t A


 



 . 

 

An exception occurs if the current I is constant in time, i.e., if the capacitor is being charged at a 

constant rate, so that I΄(t)=0. But, for a current I(t) with arbitrary time dependence, the pair of 

fields (9) and (10) does not satisfy the third Maxwell equation.  

      To remedy the situation and restore the validity of the full set of Maxwell’s equations in the 

interior of the capacitor, we must somehow correct the expressions (9) and (10) for the e/m field. 

To this end, we employ the following Ansatz:  

 

                      

0

0

( )( )
ˆ ˆ( , ) , ( , ) ;

2

( ) ( ) /

z

I tt
E f t u B g t u

A

t I t A



 
 





   
      

  

 

               (12) 

 

where f (ρ,t) and g(ρ,t) are functions to be determined consistently with the given current function 

I(t) and the given initial conditions. It is easy to check that the solutions (12) automatically 

satisfy the first two Maxwell equations (11a) and (11b). By the Faraday-Henry law (11c) and the 

Ampère-Maxwell law (11d) we get the following system of partial differential equations:  

 

                                            

0

0 0

( )
( )

2

( ) ( )
( )

I tf g
a

t A

g f
b

t

 



 
 



 
 

 

 


 

                      (13) 

 

Note in particular that the “classical” solution with f (ρ,t)0 and g(ρ,t)0 is possible only if 

I΄(t)=0  I=constant in time (i.e., if the capacitor is being charged at a constant rate), as 

mentioned earlier.  

      As a special case, let us assume that the functions f and g are time-independent, i.e., f /t = 

g /t=0  f=f (ρ), g=g(ρ). From (13a) we get (ignoring an arbitrary constant):  

2
0 ( )

( )
4

I t
f

A

 



  . 

 

This can only be valid if I΄(t)=constant  I΄΄(t)=0. On the other hand, (13b) yields: ρg=constant 

 λ  g(ρ)= λ/ρ. In order for g(ρ) to be finite for ρ=0, we must set λ=0, so that g(ρ)0. The 

solution (12) for the e/m field inside the capacitor is then written:  
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2
0 0

0

( ) ( )( )
ˆ ˆ, ;

4 2

( ) 0 , ( ) ( ) /

z

I t I tt
E u B u

A A

I t t I t A



   





 
   
 

  

                  (14) 

 

We notice that, since I΄΄(t)=0, Eq. (6) is still valid and the displacement current inside the 

capacitor is again given by Id =I(t). What is different here is the correction to the electric field in 

order for the Faraday-Henry law to be satisfied.  

 

 

5.  The Maxwell equations outside the capacitor 
 

We recall that the positive and the negative plate of the capacitor of Fig. 4 are centered at z=0 

and z=d, respectively, on the z-axis, where the plate separation d is much smaller than the radius 

a of the plates. The space exterior to the capacitor consists of points with  ρ > 0  and  z(0,d ), as 

well as points with  ρ > a  and  0 < z < d. (In the former case we exclude points on the z-axis, with 

ρ=0, to ensure the finiteness of our solutions in that region.)  

      The e/m field outside the capacitor is usually described mathematically by the equations 

[2,3,6]  

 

                                               0 ( )
ˆ0 ,

2

I t
E B u




                       (15) 

 

As the case is with the standard solutions in the interior of the capacitor, the solutions (15) fail to 

satisfy the Faraday-Henry law (11c) (although they do satisfy the remaining three Maxwell 

equations), since 0E   while  

 

0 ( )
ˆ

2

I tB
u

t










 . 

 

As before, an exception occurs if the current I is constant in time, i.e., if the capacitor is being 

charged at a constant rate, so that I΄(t)=0.  

      To find more general solutions that satisfy the entire set of the Maxwell equations, we work 

as in the previous section. Thus, we assume the following general form of the e/m field 

everywhere outside the capacitor:  

 

                                0 ( )
ˆ ˆ( , ) , ( , )

2
z

I t
E f t u B g t u


 



 
   

 
                  (16) 

 

where f and g are functions to be determined consistently with the given current function I(t). The 

solutions (16) automatically satisfy the first two Maxwell equations (11a) and (11b). By Eqs. 

(11c) and (11d) we get the following system of partial differential equations:  
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0

0 0

( )
( )

2

( ) ( )
( )

I tf g
a

t

g f
b

t



 

 
 



 
 

 

 


 

                          (17) 

 

Again, the usual solution with f (ρ,t)0 and g(ρ,t)0 is possible only if I΄(t)=0, i.e., if the 

capacitor is being charged at a constant rate.  

      As a special case, let us assume that the functions f and g are time-independent, i.e.,  f=f (ρ), 

g=g(ρ). From (17a) we get:  

 

0 ( )
( ) ln( )

2

I t
f


 




  

 

where κ is a positive constant quantity having dimensions of inverse length. This can only be 

valid if I΄(t)=constant  I΄΄(t)=0. On the other hand, (17b) yields: ρg=constant  λ  g(ρ)= λ/ρ. 

Since ρ>0, by assumption, we could now let λ0. For reasons of continuity, however (see below), 

we set λ=0, so that g=0. The solution (16) for the e/m field outside the capacitor is then written:  

 

                                 
0 0( ) ( )

ˆ ˆln( ) , ;
2 2

( ) 0

z

I t I t
E u B u

I t



 


 


 

 

                       (18) 

 

Note, in particular, that the magnetic field in the strip  0 < z < d  is continuous for ρ=a, since the 

expression for B  in (18) matches the corresponding expression in (14) upon substituting ρ=a 

(remember that A=πa
2
). No analogous continuity exists, however, for the electric field. 

Physically, this may be attributed to fringing effects at the edges of the plates.  

 

6.  Summary 
 

The purpose of this article is to point out the need to revisit the problem of the charging 

capacitor, as this is discussed in connection with the Maxwell displacement current, and to 

carefully examine the expressions for the e/m field both in the interior and the exterior of this 

system. As was noted, the standard formulas assumed for this field, tailor-made to satisfy the 

Ampère-Maxwell law, fail to satisfy the Faraday-Henry law except in the special case where the 

capacitor is being charged at a constant rate. We have derived general expressions for the e/m 

field that satisfy the full set of Maxwell’s equations for arbitrary charging rate of the system. 

These results may reduce to the familiar set of equations in the case of a constant charging rate.  

 

 

Note 
 

This article is an extensively revised and expanded version of an article published previously in 

letter form [9]. In particular, the results contained in Sec. 5 of this article are new.  
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Appendix: Vector operators in cylindrical coordinates 
 

Let A  be a vector field, expressed in cylindrical coordinates (ρ, φ, z) as  

 

ˆ ˆ ˆ( , , ) ( , , ) ( , , )z zA A z u A z u A z u            . 

 

The div and the rot of this field, in this system of coordinates, are written respectively as follows:  

 

1 1
( ) z

A A
A A

z




   

 
   

  
 , 

 

1 1
ˆ ˆ ˆ( )z z

z

A A AA A
A u u A u

z z

  
  

     

         
           

          
 . 

 

In particular, if the vector field is of the form ˆ ˆ( ) ( )z zA A u A u    , then 0A  .  
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Abstract. We treat the problem of the quantum pendulum in order to calculate the swing 

period of its classical counterpart. For this we apply the semiclassical path integral method 

to construct the system’s fractional Green’s function. The energy eigenvalues arise as the 

poles of the later, and the frequency of oscillation comes from the difference of two 

successive eigenvalues. The linear and non-linear potential are separately discussed and the 

role of the derivatives with respect to the energy of the action phase-factors, is discussed in 

detail.  

Keywords: non linear pendulum, period of oscillation, path integral, Mathieu functions, 

hindered rotation, action phase factor  

PACS: 03.65.Sq, 03.65.Xp, 45.50.Dd  

 

INTRODUCTION 

      The simple pendulum is a famous case study in classical mechanics that still attracts 

attention, since it involves many problems in different branches of physics, leading to many 

interesting applications. Mentioning a few we can distinguish its diachronic and historical use as 

a clock or a metronome [1], as a seismometer [2], as a ballistic galvanometer [3], as a definite 

instrument for determining gravitational constant G [4] or an instrument for proving the equiva-

lence of gravitational and inertial mass [5], part of an experimental setup for measuring viscosity 

[6], and many others. 

     It was only a couple of years after the breakthrough of quantum mechanics, that a study of the 

quantum pendulum appeared for the first time in science [7], by Edward Condon. Condon would 

soon become one of the most influential physicists in the quantum area with major contributions 

to atomic physics. The substantial difference in the quantum case comes from the possibility of 

the particle to exist in a classically inaccessible region, (barrier), where the potential energy 

exceeds the total energy, via the tunneling effect. Thus, quantum pendulum at most concerns 

with what is known as hindered or restricted rotation, which is the inhibition of rotation of mo-

lecular structures about a bond due to the presence of a sufficiently large rotational barrier, [8].  

https://goldbook.iupac.org/html/I/I03034.html
https://goldbook.iupac.org/html/R/R05408.html
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In addition, the dynamics of the driven classical pendulum resembles those of the pure quantum 

mechanical Josephson effect [9] in superconductive structures. 

In the present work we are interested to the calculation of the period of the non linear 

pendulum by taking in account the peculiar quantum mechanical effect of tunneling. As far as 

pendulum is treated inside the frame of classical mechanics governed by the Newton’s laws of 

motion, period calculation is straightforward. Through the linearization of the force term, valid in 

the small angle regime, we can easily solve the differential equation of motion. The solution of 

the later contains the well known frequency of oscillation, /g l , in terms of gravity acceleration 

and the length of the pendulum, which is amplitude independent. This is what we call 

isochronism. On the other hand, when we proceed without making the linear approximation, the 

period is produced by integrating time through the energy conservation principle, in terms of the 

elliptic integral of the first kind, and depends on the amplitude. Unfortunately the period is not 

now given in a closed form.                                                                                                 

As far as quantum pendulum is concerned we must first proceed to the construction of 

Schrödinger’s equation. For this, we start from the classical Lagrangian and construct the 

classical Hamiltonian by finding the generalized momentum of the system. Then we apply the 

conventional rule by replacing the canonical momentum with the corresponding quantum 

operator. The solution of this Schrödinger equation is a difficult task, due to the non linear 

potential term, not only for the eigenfunctions but for the energy eigenvalues as well, and 

complicated arithmetic methods are concerned. Thus, the result lacks of any analytical relations 

that would demonstrate the qualitative involvement of tunneling to the swing period.   However 

if we assume a parabolic form of the potential, (which of course is equivalent to the linearization 

of the classical force term), we reduce the complexity to the one of the harmonic oscillator 

problem. The classical frequency of oscillation is then explicitly contained in the quantum energy 

spectrum, equal to the photon frequency for transition between two adjacent states, and is energy 

independent. The later is equivalent to the forementioned classical isochronism.  

Instead of trying to solve Schrödinger equation we can attack the problem in a different 

way. For this we construct the system’s Green’s function, as the Fourier transformed of its 

propagator, via the aid of semiclassical path integration. According to semiclassical path 

integration, the Green’s function for one dimensional physical systems is fulfilled through the 

mutual contribution of all possible changes in phase of the wave-function due propagation or 

reflection. Again, this is not trivial at all since it demands the summation of all possible changes 

of phase, (real or imaginary), for the infinite set of possible paths, without omitting any of them, 

performing the tedious calculation while always keeping the correct order of regions interchange. 

This results in a complicated but compact formula for the Green’s function. Thus, the great 

advantage comes from the fact that we can now reveal the analytic form of the energy spectrum 

in a closed form as the approximate complex poles of  the fractional Green’s function, keeping 

their real part. This is done after expanding the denominator, (constituted by transcendental 

functions), in terms of analytic tunneling parameters. Again, we extract the classical period from 

the difference of two adjacent energy eigenvalues. The energy spectrum turns to be discrete 

although still infinite. The spacing between adjacent energy levels is of the order of magnitude of 

Planck’s constant (~10
-34

) times the frequency of classical oscillations. This corresponds to a 

truly negligible quantity either for a macroscopic pendulum or a microscopic. For example, 

taking the length of the pendulum to be comparable in magnitude with that of a chemical bond, 

(meaning some Angstroms), we get an energy spacing of about 10
-9

 eV. This means that even in 

the classical case where all values of energy are permitted, no one can in practice achieve such a 
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high accuracy in measuring the energy. This makes the spacing rather unimportant. In addition 

the arithmetic value of the quantum corrected swing period turns to be only negligibly different 

from the classical. Since this is the case, we do not proceed to any quantitative calculation but 

rather bring out the qualitative involvement of tunneling.  

 

The structure of the present paper is as follows. In the next section we analyze in short the 

dynamics of the classical pendulum stressing the lack of isochronism for increasing amplitudes, 

caused by the non linear nature of the potential involved in the Langrangian. In the next section 

we introduce the Schrödinger equation for the pendulum and demonstrate its solutions through 

the Mathieu functions while pointing the quantum equivalent to classical isochronism. Following 

this we develop the semiclassical path integral method for the construction of the system’s 

Green’s function, which is the Fourier transformed of its propagator. We then proceed to the 

calculation of the energy spectrum and subsequently of its classical period of motion through the 

difference of two successive eigenvalues. We develop a prototype formula in a compact form. 

Finally we mark and further analyze the role of the derivatives with respect to the energy of the 

action phase-factors, as these appear in the above mentioned formula. In the last section we 

briefly conclude.    

 

  

 

THE CLASSICAL PENDULUM 

     The simple pendulum governed by the laws of classical mechanics concerns a plane motion 

with only one degree of freedom. It consists of a point mass m attached to one end of a 

weightless chord of length l, moving without any resistance acted upon by gravity and the 

tension in the chord, while the other end turns without friction around a fixed point. Although 

simple, its exact solution is not trivial at all, due to the non linear force term that appears in its 

differential equation 

                                                                        

                                                                sin 0ml mg                                                              (1) 

 

The exact solution of the above equation demands the aid of elliptic functions. However we can 

approach pendulum’s vibrational motion through the linearized equation 

                                                                  0ml mg                                                                 (2) 

valid for small only amplitudes where sin  . The solution of (2) which is the differential 

equation of a harmonic oscillator is straight forward and gives the well known result for the 

period of swinging 

                                                                  
1/ 2

2 /oT l g                                                             (3) 

 

On the other hand the accurate result for the period is met by integrating time in the energy 

conservation principle, as far as Figure 1 is concerned according to which α is the angular 

amplitude and the minimum of potential energy is taken as zero for θ=0. Doing so we find 
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dt

l d l d
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dt l g

l

 

 

  

 

 

 

 

 



     

  



  
 

                       

(4) 

Following Landau’s prescription [10] we substitute
sin( / 2)

sin
sin( / 2)





   to convert the above relation  

to 

                                                  

        -1
                4  K sin(α/2) 4  K sin cos /2   or   1 /

l l
T T

g g
E E mgl                         (5) 

where  
/ 2

2 20

( )
1 sin

d
K k

k

 


 


 is the complete elliptic integral of the first kind [11]. The two 

relations are connected through the  
 K sin(α/2)

 
π/2

oT T   and of course coincide for 0  . 

                        
 

 
FIGURE 1. The physical pendulum. The vertical position of the chord corresponds to zero potential 

energy, while α stands for the angular amplitude of the swing. 
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The motion corresponding to (3) is isochronic, meaning that the period is independent of the 

amplitude and constant for a given pendulum. The reason for this comes from the Langrangian of 

the pendulum, which is then also linearized in the small angle regime, ( sin  ),   as 

2 2 21 1
( , ) ( ) ( )

2 2
L T U ml mgl         . Thus, if we carry out a transformation in which the 

angular displacement is changed by a factor   while the time interval remains unchanged, then 

the Lagrangian is simply multiplied by the constant 2  and the equations of motion are 

unaltered. Thus for a given linear pendulum the equations of motion permit a series of 

geometrically similar paths where the times of motion between corresponding points are in unit 

ratio. This similarity vanishes for large amplitudes and this is clearly reflected on the dependence 

of the period on the amplitude and subsequently on the energy as well.  

     Since the elliptic integral is not easily calculated, many approximation schemes have been 

developed over the years for the calculation of the period of swing: see [12] and references 

therein. In this way many of these approximations lead to interesting applications, as is for 

example the use of the physical pendulum as part of the set up for measuring acoustic impedance, 

via the use of the Struve function [13].  

 

 

THE QUANTUM PENDULUM 

     In order to construct the time independent Schrödinger equation for the pendulum we start 

from the Lagrangian 2 21
( , ) ( ) ( ) (1 cos )

2
L T U ml mgl           and find the system’s 

generalized momentum [10] as 

                                                           2
p p ml

L
  


 





                                                         (6) 

Thus the Hamiltonian can be expressed as a function of the generalized variables θ, pθ  

                                       

2

2

2

2

2 2

2

1
( , ) ( ) ( ) (1 cos )

2

1
( , ) (1 cos )

2
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H T U ml mgl

H p ml mgl

H p mgl
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ml
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ml







     

 

 





   

 

 



 
 

 



                                 (7) 

Then the operator Ĥ  corresponding to the classical Hamiltonian is found by applying the 

convention rule and replacing the canonical momentum p  by i






, to take 

                                                 

2 2

2 2

2 2
2

2

ˆ (1 cos )

ˆ (1 cos )

2

2
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H
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I
I
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
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


   
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





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

                                               (8) 
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where we have substituted 
2I ml  for the moment of inertia and 2 g

l
  for the square of the 

classical frequency of swinging. Thus the Schrödinger equation reads 

                                        
2 2

2

2
(1 cos ) ( ) ( )

( )

2
EI

I
  





    

 



                                           (9) 

 

The wavefunction ( )  has to be single-valued, meaning periodic in θ of period 2π: 

( 2 ) ( )     . In addition we can write (9) as  

                                   
22

2

2 2
( ) 0

( ) 2
2 cos

I I
E I 

 
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 

    
        

                                 (10) 

 and by further substituting θ=2φ as 
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                           (11) 

where for simplicity we have used the same symbol for the wave-function. The last form is that 

of a Mathieu equation [14] whose standard form is 

                                                      
2

2
2 cos 2 0

d y
a q x y

dx
                                                       (12) 

with 

                                         2

2

8
0

I
a E I   and

2

4 0
I

q
 

   
 

                                         (13) 

The periodicity of the wave-function now demands   (2 2 ) (2 ) 2 (2 )            

which means that the wave-function is periodic of period π as a function of φ. Such solutions are 

the Mathieu functions of even order [14], namely the 2 ( )mce   and 2 2 ( )mse   for m=0,1,2,.. 

However, as was pointed out in [15], equation (11) corresponds to a Mathieu equation with 

negative q, and not positive as it should, and so we have to further perform a last change of 

variables of the form 
2


   . The normalized solutions of the Schrödinger equation (11) are 

given by the following relations [15]: 
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where the superscripts e and o denote even and odd solutions in θ respectively. By assuming 

trigonometric expansions for the eigenfunctions we can compute both the eigenvalues (known as 

characteristic values) and the related eigenfunctions. However the calculations are rather tedious 

since they involve numerical calculations based on certain three-term recursion relations or 

appropriate definitions of quantities as continued fractions [15]. An initial guess of the wave 

function is also needed. 

      Things become extremely simple however, if we assume a parabolic potential ( sin  ) to 

write (9) in the form 

  

                                    

 
2 2

2 2

2

2 2
2 2

2

( ) ( )   

                           approximated as

( ) ( )

( )
2 sin / 2

2
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2 2
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I
I

I
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 
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
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
 
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   

  

 




 
 



                                     (15)  

The above correspond to the harmonic oscillator problem whose eigenfunctions are given in 

terms of the Hermite polynomials [16] while its eigenvalues take the simple form 

                                                 
1

2
nE n 

 
  
 

                                                                         (16) 

Since only the 1n    transitions are allowed [16], ω is equal to the corresponding photon 

frequency and is common for all the possible values of energy. This is the quantum equivalent to 

classical isochronism that was mentioned in the previous section. In this way we can calculate 

the classical frequency of swinging through the difference of two successive quantum energy 

levels.  

  

  

THE SEMICLASSICAL PATH INTEGRAL APPROACH 

 
     The path integral formulation can be applied to the construction of a system’s Green’s 

function, the later being the Fourier transformed in time of the propagator [17]. In its 

semiclassical version which is based on a periodic orbit theory [18,19], the Green’s function for 

one dimensional propagation is  accomplished by taking account of all possible changes in phase 

of the wave-function. However this is not trivial at all since it encloses the contribution of all 

possible changes of phase when a turning point is met either in the allowed or in the forbidden 

regions of motion, for an infinite set of possible paths.   

     The above mentioned pioneering work inspired many others to further  improve the method 

and analytically solve interesting one dimensional problems. Among those,  Holstein and Swift 

[20] and Holstein alone [21] showed how Gsc(E) , which is the semiclassical fixed energy 

transmission amplitude, can be used to achieve analytic continuation of the propagator to 

forbidden regions, and furthermore established its connection to propagation and to reflection. 

For example when Gsc(E) is calculated for propagation between two points in a classically 

allowed region of motion, the perturbed complex energy spectrum of the later is revealed [22]. 

The central result for the calculation of the transmission amplitude via an infinite set of paths that 

the particle follows, can be written in compact form as 
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m
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2 ( , )

N j
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ij

Gsc E a
k r r 





 
  

 
                                              (17)                 

In the above equation 1 2 ( , )k r r is a non local wave number of the particle  connecting   

the initial and the final point of propagation and defined by 1 2 1 2( ) ( )( , ) k r k rk r r   where 

 1
( ) 2 ( )k r m E V r  , with E standing for the energy and V(r) for the potential function. The 

index j corresponds to a particular path, while the index i corresponds to a certain event along the 

path. Therefore, the symbol ija  represents each i event factor that contributes to the  j
th

 path. 

Their total number is Ν(j) and depends on the path. These event factors are of two types. One 

type represents propagation and the other represents reflection. The ija  propagation event factors 

describe propagation (from α to β ) in an either allowed (given by  ( )exp[ ]i k r dr
ike




  , where 

( )k k r ), or in a forbidden region of motion (given by ( )exp r dr e










 
  
 

 with   

 1
( ) 2 ( )r m V r E

  , where ( )r  ), while the ija  reflection event factors describe 

reflections from turning points, (-i for reflection from a turning point in an allowed region, + i/2 

for reflection in a forbidden region , and –1 for reflection from an infinite barrier). Both k and κ 

are dimensionless quantities and should not be confused with the corresponding position 

dependent wave numbers, although we have kept the same symbol in order to emphasize their 

origin. Thus the product 
( )

1

N j

ij

i

a


  gives the unique amplitude for each possible path for going from 

r1 to r2 in constant energy. The sum in (17) extends to the infinity of possible paths connecting 

the space points r1 and r2. The above mentioned  rules are depicted in the figure that follows.  

                            
FIGURE 2. The rules for the construction of the path integral amplitudes through the αij event factors. 

The first motion is in a classically allowed region, the second in a classically forbidden region and the 

third case describes reflection from an infinite barrier. The direction before the reflection is always from 

right to left and is reversed after meeting the turning point. 

potential =
( )exp z dz






 
 
 ( )exp i k z dz





 
  

Energy

Energy

 

ββ αα

reflection = -1

reflection = i/2reflection = -i

propagation =
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The above described method can also be found in standard textbooks of path integrals, or 

quantum tunneling as well, [23,24]. 

     It is readily seen that the calculation of the overall transmission amplitude depends on the 

topology of the potential function and on the nature of the turning points. Since there is an 

infinity of paths traversing both the allowed and the forbidden regions, it is very crucial to 

include all of them in the calculation by performing correct the rather complicated combinatorics. 

Then, and since each path repeats itself, the infinite class of paths can be summed to constitute 

geometric progressions,  from which the analytic properties of Gsc(E) can be recognized directly. 

For the present requirement of computing the overall transmission amplitude, the points r1 and r2 

are in the classically allowed region of motion of the pendulum, which is the area between angles 

–α and α shown in Figure 1. 

      

 

THE CONSTRUCTION OF THE PENDULUM’S GREEN’S FUNCTION 

 

     Since the pendulum has only one degree of freedom it can be treated as an one dimensional 

physical system. Thus we can apply the formulation of the semiclassical Green’s function that 

was described in the previous chapter, with only a few changes in notation. In particular the mass 

factor comes as the moment of inertia instead of the mass alone and we use the angle variable θ 

instead of the space variable r. In addition we should sketch the one dimensional potential as in 

Figure 3 that follows, in order to properly describe the hindered rotation of the pendulum: 

 

                                    
FIGURE 3. The potential of the quantum pendulum for hindered rotation. In order to exclude free 

rotation an infinite barrier is supposed at angle π (-π). There are three regions of motion: the classically 

accessible region 2, and the classically inaccessible regions 1 and 3, as these are structured by the specific 

value of the energy E and are separated from each other by the turning points α and –α. 
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     Figure 3 describes the induced topology of the potential as this is determined by the specific 

value of the energy. There are two turning points, meaning angles –α and α, while an infinite 

rotational barrier is supposed at angle π (-π), in order to forbid free rotation. For example we can 

imagine an elastic wall at this position. In this way we have three regions of motion, one 

classically allowed (region 2) and two classically forbidden (regions 1 and 3). In order to 

construct the overall transition amplitude for propagation between points θ1 and θ2 of region 2, 

we separate the problem in smaller ones.  For this we write Gsc(E) as a sum of transition 

amplitudes involving specific regions of motion each time, of the form:   

                                                  
2 2,1 2,3 2,1,3( )scG E G G G G                                                    (18)                                                                                       

where 
,G 

for example denotes the amplitude for propagation involving regions ρ and σ only, in 

all possible ways. In the paragraphs that follow we separately develop each amplitude providing 

the basic steps.  

 

i) Amplitude 
2G  

It involves propagation inside region 2. It is constructed by fundamental amplitudes ,x yA  that 

connect points x and y in a straight path, and by amplitudes ,x yA , (we use the A letter for the 

classically accessible region of motion 2),  that connect x and y with multiple repetitions 

(including reflections) in all possible ways, following the rules of the event factors that were 

given in the previous section. In this way we can write 
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where we define the following quantities 
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Thus the G
2
 amplitude takes the following form  
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ii) Amplitudes 
2,1G , 

2,3G  

It is quite obvious that the above amplitudes are equal to each other due to symmetry reasons. 

We use the letter B for the symbolism of the amplitudes in the forbidden region 1. In addition the 

star as a superscript denotes the fact that the amplitude includes at least one propagation event 

and not just a reflection factor. Since –α is the border between the two regions of motion the goal 

is to reach angle –α in all possible ways while staying in region 2, and then interchange the two 

regions in every possible way. According to these we can write 

 

                  
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which transforms to the following due to the geometric progression that appears  
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and where we define the following quantities 
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Putting all these in equation (22) and performing the algebra we get the following result for the 

amplitude 
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                          (25) 

 

The total amplitude for propagation in the classically allowed and one of the two classically 

forbidden regions of motion will be twice of the above for the reasons previously explained, and 

so we finally get 
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iii) Amplitude 
2,1,3G  

It order to properly construct the amplitude for paths involving all regions of motion we think as 

follows: first of all we should reach angle –α in every possible way while constantly staying at 

region 2, which constitutes amplitude 
1 ,A  , and then interchange regions 1 and 2 in every 

possible way starting and ending up to angle –α, this is the amplitude (1,2)X 
 to be defined. 

We reach angle α in a straight path and then interchange regions 3 and 2 in every possible way 

starting and ending up to angle α, this is amplitude (3,2)X 
, and we infinitely repeat this 

process. We interchange for the last time regions 1 and 2, and finally reach angle θ2 while 

remaining in region 2. Finally we should multiply the above overall amplitude with a factor of 

two, since we could equally well start with the interchange of regions 2 and 3, and proceed 

analogously. The above are mathematically described by the following equation 
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where we have used the fact that the two “doublet” amplitudes (1,2)X 
and (3,2)X 

are equal 

to each other due to symmetry reasons. In fact each doublet is given by the following formula 
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Putting equations (24) and (28) in (27) and performing the tedious algebra we get the following 

result for the amplitude 
2,1,3G  
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CALCULATION OF THE QUANTUM CORRECTED CLASSICAL SWING 

PERIOD 

 

The total propagation amplitude as this is calculated by the sum of equations (21), (26) and (29), 

is constructed by a regular (non pole) and three pole (fractional) terms. It is clear that the pole 

terms contain all the bits of interesting information for the problem under study, while the regular 

term provides the general background of propagation. In fact the major contribution to 

propagation is achieved when the denominator of a pole term approaches (if not equal) to zero.    

In this way the energy spectrum of the system is revealed, since it corresponds to the energy 

poles of the propagation amplitude, and the Green’s function itself can be written as a sum over 

the resonance energy states that the pendulum potential can support, [19]. 

       Amplitude 
2G involves propagation inside classically accessible region 2 only, and so its 

energy spectrum resembles the one of a bound problem, like the harmonic oscillator (H.O.S.). 

For narrow states, which are states close to the bottom of the well, we get a closer approximation 

to the H.O.S. In order to calculate the spectrum we seek for the zeros of
21 ie  , which is the 

denominator of the pole part of the amplitude 
2G . Thus, in this framework, energy poles Εn will 

appear whenever 

                                                     
21 0 / 2ie n                                                           (30) 

  

Let us calculate μ for the harmonic potential of the form 2 21
( )

2
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(20) we have 2 22 1
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Imposing the pole condition of equation (30) we get
1

2
nE n 

 
  
 

, and so we reveal the H.O.S. 

The classical swing period can be extracted from the spectrum in two ways. First, it is given in 

terms of the derivative of ( )E  with respect to energy as 
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T
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



  


                                                        (31)                                                                 

where we have defined the time scale ( )  for the classically accessible region of motion. The 

reason for eq. (31) to happen comes from the fact that according to the physics of path 

integration ( )E is the action phase factor for propagation in the classically accessible region of 

motion with constant energy E, and so is equal to /E  , where   is the time of propagation, 

[21]. Since  is half the classical period, equation (31) follows. Second and since the energy 

spectrum depends only on quantum number n, it can be given in terms of the energy derivative 

with respect to quantum number n,  

                                                                 
2

/n

T
E n



 

                                                               (32) 

 

where equation (32) comes from the expansion of the energy eigenvalues about the central value 

(when a wave packet is considered),  in terms of which we can take the classical period, as well 

as the revival, and superrevival times of the wave packet, [25]. Equations (31) and (32) become 
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equivalent to each other under the action of condition (30), since then μ becomes a function of 

the quantum number n, and so 

                                               
( ) ( )

( ( ) )
E E n n

E n E E

 
 

   
   

   
                                         (33) 

For the case under study equation (32) is simply transformed to 
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As far as the harmonic potential is concerned, equations (31) and (32) give the classical result, 

meaning equation (3) for the classical swing period, where the quantum effects are absent. For 

the case of the real trigonometric potential, equation (31) can be written as  

               
2cos cos cos cos

( ) 2 1
2 2 2

2

a a

a a

d l d

g

E
T

E mgl

 

   



  

    
     

     
            (35) 

which of course coincides with the classical result of eq. (4) and (5), and gives the swing period 

in terms of the elliptic integral. Again the quantum effects are absent and this is due to the fact 

that the amplitude 
2G is constructed by taking in account only the classically accessible region of 

motion. However the spectrum is no more continuous since condition (30) quantizies the 

spectrum, in a way equivalent to the W.K.B. approximation, [16].     

       In order to calculate the classical swing period as this is perturbed from its classical value 

due to the quantum tunneling effect, we should look at the pole terms of the amplitudes 
2,(1 3)orG

and 
2,1,3G that emerge through propagation in the classically inaccessible regions 1 and 3. Both of 

these maximally increase their magnitude when their denominator approaches zero. Besides 

equation (30) this happens when the following condition is fulfilled 

                                                  
2 2 2 2(1 )(2 ) 2 0i ie ie ie e                                                    (36) 

However, equation (36) has not real solutions, meaning that there do not exist real values of the 

energy to satisfy it. Condition (30) makes (36) almost zero, besides the remaining term 
22ie 

, 

which is exponentially small in magnitude. If we expand equation (36) in first order about the 

energy poles Εn of the classical accessible region 2, we get 
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where we have defined time scale ( )   for the classically inaccessible region of motion in an 

analogous to equation (31) way, meaning 
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The perturbed energy poles Zn have been calculated by taking in account the tunneling effect in 

the classically forbidden regions 1 and 3. In this way and according to our previous analysis, the 

difference between the real part of two successive perturbed energy poles, will provide the 

quantum corrected swing frequency. Writing the real part of the perturbed energy poles as a 

function of the unperturbed energy poles, meaning 

                                                           Re n n nZ E f E                                                            (39) 

and introducing the perturbed swing frequency Ω as 
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                                                         1Re Ren nZ Z                                                              (40) 

we get the following equation 
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By keeping only the dominant terms in equation (37), equation (41) gives the following result for 

the quantum shift of the frequency 
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Thus, the quantum corrected period of swing can be easily calculated. Using the index quan for 

quantum and cl for classical in order to emphasize our result, we can write the following formula 
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which is the central result of this work. Due to the presence of both the exponentially small term
2 ( )nE

e


and Planck’s constant, quantum and classical period are nearly equal in magnitude. 

Quantum corrections, as these are contained in the above relation, come from three different 

sources. First the existence of the quantum tunneling effect through the exponential
2 ( )nE

e


term, 

second the dependence of the tunneling effect on energy through the induced time scale ( )nE , 

and third the dependence of the classical period on energy (present in the classical analysis as 

well), through its logarithmic derivative 
 ln ( )cl n

n

T E

E




.  

       Let us look in some detail the physical meaning of the tunneling time scale ( )nE . The 

energy dependence of the classical action inside the potential barrier, meaning quantity 
( )
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  , comes not only from the integrand but from the upper limit of 

integration as well.  The action phase factor may be written as 

                                                    

 

( )2
( ) ( , )

2
[ ( ), ] [ , ]

EI
E T E d

I
E E E




  

 




 

   

                                              (44)  

where of course 

                                                              
( , )

( , )
E

T E









                             

                          

(45)  

However, and since the upper limit of integration is the classical turning point, the following 

result holds, 

                                                              ( ), 0T E E                                            

                

(46)  

which leads to the 
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( )

2

1( )

2 ( )

Ed E I
d

dE
V E













  



                                      (47)                                                

       

  

which can be further transformed to the following 

                                              

2
2

2

( ) 1

2

I

E

d E I d
dV

dE dV
V E

 
 
 

  
  

                                        (48)    

In order to eliminate E from the right term we introduce the weight function  
1/ 2

E 


 and 

perform integration over Ε in both terms. It is clear that the parameter λ has energy dimensions.  

Equation (48) is then transformed to:     

 

                    

2
2

2
2 2 2

2

( ) 1 1

2

1I I I

E

d E I d
dE dE dV

dE dVE EV E

  

 

 

 

 
    

  

               (49)  

                                                                                                                                   

The double integral can be easily handled via a change in the order of integration to take the  

                       

22
2 2

2

( ) 1

2

1I I Vd E d
dE dV dE

dE dVE V E E

 

 


  

 

 
    

   

                  (50)

       

 

The integral over E is then elementary and equal to π, and so we take: 

                                       

2 2
2 2

2

( ) 1

2

I Id E I d
dE dV

dE dVE

 

 

 




 
   

 

                                  (51) 

 

while the last integral is trivial and gives 

                                       

 

 

2
2

2
2

2

( ) 1
( )

2

( ) ( )
2

I

I

d E I
dE

dE
E

dE I

E














  



   



  


  


       

                                   (52) 

Since ( )  is defined only inside the classically inaccessible region (1 or 3), it is clear that 

( )V  . Equation (52) then, describes the way that the knowledge of the function ( )   

permits the knowledge of the angular position inside the potential barrier as a function of the 

potential. In addition ( )  appears in both the real and imaginary energy shift of the perturbed 

energy poles in equation (37). In a previous work of us [26], the later was connected with what 

was defined as energy indeterminacies during the tunneling process.  
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CONCLUDING REMARKS 

In the present work we derived an improved and prototype formula for the swing period of the 

classical pendulum, by taking in account the pure quantum mechanical tunneling effect via semi-

classical path integration. Our central result is contained in equation (43) where the tunneling 

effect is present through the action phase factor κ(E) and its derivative with respect to energy. 

Both the μ(E) and κ(E)  action phase factors in eq. (43), defined in the classically accessible and 

classically forbidden regions of motion respectively, introduce a different time scale of the 

physical system under study. The first order energy derivative of μ(E) reproduces the classical 

formula for the swing period in terms of the elliptic integral, while its second order derivative 

reflects the quantum equivalent to classical isochronism. On the other hand the energy derivative 

of the κ(E) action phase factor introduces the time scale ( )nE whose knowledge is equivalent to 

the knowledge of the position of the particle during tunneling, as a function of the potential.      
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    Abstract. The study of symmetries of partial differential equations (PDEs) has been 

traditionally treated as a geometrical problem. Although geometrical methods have been 

proven effective with regard to finding infinitesimal symmetry transformations, they present 

certain conceptual difficulties in the case of matrix-valued PDEs; for example, the usual 

differential-operator representation of the symmetry-generating vector fields is not possible in 

this case. An algebraic approach to the symmetry problem of PDEs is described, based on 

abstract operators (characteristic derivatives) which admit a standard differential-operator 

representation in the case of scalar-valued PDEs.  
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1.  Introduction 
 

The problem of symmetries of a system of partial differential equations (PDEs) has been 

traditionally treated as a geometrical problem in the jet space of the independent and the 

dependent variables (including a sufficient number of partial derivatives of the latter variables 

with respect to the former ones). Two more or less equivalent approaches have been followed: 

(a) invariance of the system of PDEs itself, under infinitesimal transformations generated by 

corresponding vector fields in the jet space [1]; (b) invariance of a differential ideal of 

differential forms representing the system of PDEs, under the Lie derivative with respect to the 

vector fields representing the symmetry transformations [2-6].  

      Although effective with regard to calculating symmetries, these geometrical approaches 

suffer from a certain drawback of conceptual nature when it comes to matrix-valued PDEs. The 

problem is related to the inevitably mixed nature of the coordinates in the jet space (scalar 

independent variables versus matrix-valued dependent ones) and the need for a differential-

operator representation of the symmetry vector fields. How does one define differentiation with 

respect to matrix-valued variables? Moreover, how does one calculate the Lie bracket of two 

differential operators in which some (or all) of the variables, as well as the coefficients of partial 

derivatives with respect to these variables, are matrices?  

      Although these difficulties were handled in some way in [4-6], it was eventually realized that 

an alternative, purely algebraic approach to the symmetry problem would be more appropriate in 

the case of matrix-valued PDEs. Elements of this approach were presented in [7] and later 
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applied in particular problems [8-10]; no formal theoretical framework was fully developed, 

however.  

      An attempt to develop such a framework is made in this article. In Sections 2 and 3 we 

introduce the concept of the characteristic derivative – an abstract operator generalization of the 

Lie derivative used in scalar-valued problems – and we demonstrate the Lie-algebraic nature of 

the set of these derivatives.  

      The general symmetry problem for matrix-valued PDEs is presented in Sec. 4, and the Lie-

algebraic property of symmetries of a PDE is proven in Sec. 5. In Sec. 6 we discuss the concept 

of a recursion operator [1,8-14] by which an infinite set of symmetries may in principle be 

produced from any known symmetry.  

      Finally, an application of these ideas is made in Sec. 7 by using the chiral field equation as an 

example.  

      To simplify our formalism, we restrict our analysis to the case of a single matrix-valued PDE 

in one dependent variable. Generalization to systems of PDEs is straightforward and is left to the 

reader (see, e.g., [1] for scalar-valued problems).  

 

 

2.  Total and characteristic derivative operators 
 

A PDE for the unknown function u=u(x
1
, x

2
, ... )  u(x

k
) [where by (x

k
) we collectively denote 

the independent variables x
1
, x

2
, ...] is an expression of the form F[u]=0, where F[u]  F(x

k
, u, uk , 

ukl , ...) is a function in the jet space [1] of the independent variables (x
k
), the dependent variable 

u, and the partial derivatives of various orders of u with respect to the x
k
, which derivatives will 

be denoted by using subscripts: uk , ukl , uklm , etc.  A solution of the PDE is any function u=φ(x
k
) 

for which the relation F[u]=0 is satisfied at each point (x
k
) in the domain of φ.  

      We assume that u, as well as all functions F[u] in the jet space, are square-matrix-valued of 

fixed matrix dimensions. In particular, we require that, in its most general form, a function F[u] 

in the jet space is expressible as a finite or an infinite sum of products of alternating x-dependent 

and u-dependent terms, of the form  

 

  [ ] ( ) [ ] ( ) [ ] ( )k k kF u a x u b x u c x                              (2.1) 

 

where the a(x
k
), b(x

k
), c(x

k
), etc., are matrix-valued, and where the matrices Π[u], Π΄[u], etc., are 

products of variables u, uk , ukl , etc., of the “fiber” space (or, more generally, products of powers 

of these variables). The set of all functions (2.1) is thus a (generally) non-commutative algebra.  

      If u is a scalar quantity, a total derivative operator can be defined in the usual way [1] as  

 

           i i i j i jki
j jk

D u u u
u u ux

   
    

  
                         (2.2) 

 

where the summation convention over repeated up-and-down indices (such as j and k in this 

equation) has been adopted and will be used throughout. If, however, u is matrix-valued, the 

above expression is obviously not valid. A generalization of the definition of the total derivative 

is thus necessary for matrix-valued PDEs.  
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      Definition 2.1. The total derivative operator with respect to the variable x
i
 is a linear operator 

Di acting on functions F[u] of the form (2.1) in the jet space and having the following properties:  

1. On functions f (x
k
) in the base space,  Di  f (x

k
) = f / x

i
  i  f (x

k
) .  

2. For F[u]=u , ui , uij , etc., we have:  Di u = ui ,  Di uj = Dj ui = uij = uji ,  etc.  

3. The operator Di is a derivation on the algebra of all matrix-valued functions of the form (2.1) 

in the jet space; i.e., the Leibniz rule is satisfied:  

 

         [ ] [ ] [ ] [ ] [ ] [ ]i i iD F u G u D F u G u F u D G u                          (2.3) 

 

      Higher-order total derivatives Dij=DiDj may similarly be defined but they no longer possess 

the derivation property. Given that  ij=ji  and that uij=uji , it follows that DiDj = DjDi  Dij = 

Dji ; that is, total derivatives commute. We write: [Di , Dj]=0, where, in general, [A, B]  AB–BA 

will denote the commutator of two operators or two matrices, as the case may be.  

      If  u
–1

 is the inverse of u, such that  uu
–1

= u
–1

u = , then we can define  

 

             1 1 1
i iD u u D u u                                            (2.4) 

 

Moreover, for any functions A[u] and B[u] in the jet space, it can be shown that  

 

                [ , ] , ,i i iD A B D A B A D B                                       (2.5) 

 

      As an example, let (x
1
, x

2
)  (x, t) and let F[u]=xtux

2
, where u is matrix-valued. Writing 

F[u]=xtuxux , we have: Dt F[u]=xux
2 

+ xt (uxt ux + ux uxt ).  

      Let now Q[u]  Q (x
k
, u, uk , ukl , ...) be a function in the jet space. We will call this a 

characteristic function (or simply a characteristic) of a certain derivative, defined as follows:  

      Definition 2.2. The characteristic derivative with respect to Q[u] is a linear operator ΔQ 

acting on functions F[u] in the jet space and having the following properties:  

1. On functions f (x
k
) in the base space,   

 

( ) 0k
Q f x                                                    (2.6) 

 

(that is, ΔQ  acts only in the fiber space).  

2. For  F[u]=u ,  

             [ ]Qu Q u                                                     (2.7) 

 

3. ΔQ  commutes with total derivatives:  

 

             [ , ] 0 (all )Q i i Q Q iD D D i                                     (2.8) 
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4. The operator ΔQ is a derivation on the algebra of all matrix-valued functions of the form (2.1) 

in the jet space (the Leibniz rule is satisfied):  

 

         [ ] [ ] [ ] [ ] [ ] [ ]Q Q QF u G u F u G u F u G u                              (2.9) 

 

      Corollary: By (2.7) and (2.8) we have:  

 

    [ ]Q i Q i iu D u D Q u                                             (2.10) 

 

      We note that the operator ΔQ is a well-defined quantity, in the sense that the action of ΔQ on u 

uniquely determines the action of ΔQ on any function F[u] of the form (2.1) in the jet space. 

Moreover, since, by assumption, u and Q[u] are matrices of equal dimensions, it follows from 

(2.7) that ΔQ preserves the matrix character of u, as well as of any function F[u] on which this 

operator acts.  

      We also remark that we have imposed conditions (2.6) and (2.8) having a certain property of 

symmetries of PDEs in mind; namely, every symmetry of a PDE can be represented by a 

transformation of the dependent variable u alone, i.e., can be expressed as a transformation in the 

fiber space (see [1], Chap. 5).  

      The following formulas, analogous to (2.4) and (2.5), may be written:  

 

                 1 1 1
Q Qu u u u                                             (2.11) 

             [ , ] , ,Q Q QA B A B A B                                              (2.12) 

 

      As an example, let (x
1
, x

2
)  (x, t) and let F[u]=a(x,t)u

2
b(x,t)+[ux , ut] , where a, b and u are 

matrices of equal dimensions. Writing u
2
=uu and using properties (2.7), (2.9), (2.10) and (2.12), 

we find:  ΔQ F[u]=a(x,t)(Qu+uQ)b(x,t)+[Dx Q, ut]+[ux , Dt Q].  

      In the case where u is scalar-valued (thus so is Q[u]), the characteristic derivative ΔQ admits a 

differential-operator representation of the form  

 

       [ ] [ ] [ ]Q i i j

i i j

Q u D Q u D D Q u
u u u

  
    

  
                  (2.13) 

 

(See [1], Chap. 5, for an analytic proof of property (2.8) in this case.)  

 

 

3.  The Lie algebra of characteristic derivatives 
 

The characteristic derivatives ΔQ acting on functions F[u] of the form (2.1) in the jet space 

constitute a Lie algebra of derivations on the algebra of the F[u]. The proof of this statement is 

contained in the following three Propositions.  
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      Proposition 3.1. Let ΔQ be a characteristic derivative with respect to the characteristic Q[u]; 

i.e., ΔQ u=Q[u]  [cf. Eq. (2.7)]. Let λ be a constant (real or complex). We define the operator λΔQ 

by the relation  

 

(λΔQ) F[u]  λ (ΔQ F[u] ) . 

 

Then, λΔQ is a characteristic derivative with characteristic λQ[u]. That is,  

 

         Q Q                                                       (3.1) 

 

      Proof. (a) The operator λΔQ is linear, since so is ΔQ .  

(b)  For F[u]=u,  (λΔQ)u= λ(ΔQ u)=λQ[u] .  

(c)  λΔQ commutes with total derivatives Di , since so does ΔQ .  

(d)  Given that ΔQ satisfies the Leibniz rule (2.9), it is easily shown that so does λΔQ .  

 

      Comment: Condition (c) would not be satisfied if we allowed λ to be a function of the x
k
, 

instead of being a constant, since λ(x
k
) generally does not commute with the Di. Therefore, 

relation (3.1) is not valid for a non-constant λ.  

      Proposition 3.2. Let Δ1 and Δ2 be characteristic derivatives with respect to the characteristics 

Q1[u] and Q2[u], respectively; i.e., Δ1u=Q1[u], Δ2u=Q2[u]. We define the operator Δ1+Δ2 by  

 

(Δ1+Δ2) F[u]  Δ1 F[u] + Δ2 F[u] . 

 

Then, Δ1+Δ2 is a characteristic derivative with characteristic Q1[u]+Q2[u]. That is,  

 

       1 2 1 2with [ ] [ ] [ ]Q Q u Q u Q u                                    (3.2) 

 

      Proof. (a) The operator Δ1+Δ2 is linear, as a sum of linear operators.  

(b)  For F[u]=u,  (Δ1+Δ2)u = Δ1u +Δ2u = Q1[u]+Q2[u] .  

(c)  Δ1+Δ2 commutes with total derivatives Di , since so do Δ1 and Δ2 .  

(d)  Given that each of Δ1 and Δ2 satisfies the Leibniz rule (2.9), it is not hard to show that the 

same is true for Δ1+Δ2 .  

      Proposition 3.3. Let Δ1 and Δ2 be characteristic derivatives with respect to the characteristics 

Q1[u] and Q2[u], respectively; i.e., Δ1u=Q1[u], Δ2u=Q2[u]. We define the operator [Δ1 , Δ2] (Lie 

bracket of Δ1 and Δ2) by  

 

[Δ1 , Δ2] F[u]  Δ1 (Δ2 F[u]) – Δ2 (Δ1 F[u]) . 

 

Then, [Δ1 , Δ2] is a characteristic derivative with characteristic Δ1Q2[u]–Δ2Q1[u]. That is,  

 

    1 2 1 2 2 1 1,2[ , ] with [ ] [ ] [ ] [ ]Q Q u Q u Q u Q u                            (3.3) 
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      Proof. (a) The linearity of [Δ1 , Δ2] follows from the linearity of Δ1 and Δ2 .  

(b)  For F[u]=u,  [Δ1 , Δ2]u = Δ1 (Δ2u) – Δ2 (Δ1u) = Δ1Q2[u]–Δ2Q1[u]  Q1,2[u] .  

(c)  [Δ1 , Δ2] commutes with total derivatives Di , since so do Δ1 and Δ2 .  

(d)  Given that each of Δ1 and Δ2 satisfies the Leibniz rule (2.9), one can show (after some 

algebra and cancellation of terms) that the same is true for [Δ1 , Δ2].  

      In the case where u (thus the Q’s also) is scalar-valued, the Lie bracket admits a standard 

differential-operator representation [1]:  

 

         1 2 1,2 1,2 1,2[ , ] [ ] i i j

i i j

Q u D Q D D Q
u u u

  
     

  
               (3.4) 

 

where   Q1,2[u] = [Δ1 , Δ2] u = Δ1Q2[u] – Δ2Q1[u] .  

 

      The Lie bracket [Δ1 , Δ2] has the following properties:  

 

1. [Δ1 , aΔ2+bΔ3] = a [Δ1 , Δ2] + b [Δ1 , Δ3] ;  

[aΔ1+bΔ2 , Δ3] = a [Δ1 , Δ3] + b [Δ2 , Δ3]        (a, b = const.)  

2. [Δ1 , Δ2] = – [Δ2 , Δ1]      (antisymmetry)  

3. [Δ1 , [Δ2 , Δ3]] + [Δ2 , [Δ3 , Δ1]] + [Δ3 , [Δ1 , Δ2]] = 0 ;  

[[Δ1 , Δ2] , Δ3] + [[Δ2 , Δ3] , Δ1] + [[Δ3 , Δ1] , Δ2] = 0        (Jacobi identity)  

 

 

4.  The symmetry problem for PDEs 
 

Let F[u]=0 be a PDE in the independent variables x
k 
 x

1
, x

2
, ... , and the (generally) matrix-

valued dependent variable u. A transformation u(x
k
)u΄(x

k
) from the function u to a new 

function u΄ represents a symmetry of the PDE if the following condition is satisfied: u΄(x
k
) is a 

solution of F[u]=0 when u(x
k
) is a solution; that is, F[u΄]=0 when F[u]=0.  

      We will restrict our attention to continuous symmetries, which can be expressed as 

infinitesimal transformations. Although such symmetries may involve transformations of the 

independent variables (x
k
), they may equivalently be expressed as transformations of u alone (see 

[1], Chap. 5), i.e., as transformations in the fiber space.  

      An infinitesimal symmetry transformation is written symbolically as  

 

u  u΄= u+δu 

 

where δu is an infinitesimal quantity, in the sense that all powers (δu)
n
 with n>1 may be 

neglected. The symmetry condition is thus written  

 

            F[u+δu] = 0   when   F[u] = 0                                        (4.1) 
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      An infinitesimal change δu of u induces a change δF[u] of F[u], where  

 

δF[u] = F[u+δu] – F[u]      F[u+δu] = F[u] + δF[u]                     (4.2) 

 

Now, if δu is an infinitesimal symmetry and if u is a solution of F[u]=0, then u+δu also is a 

solution; that is, F[u+δu]=0. This means that δF[u]=0 when F[u]=0. The symmetry condition 

(4.1) is thus written as follows:  

 

δF[u] = 0   mod   F[u]                                              (4.3) 

 

      A symmetry transformation (we denote it M) of the PDE F[u]=0 produces a one-parameter 

family of solutions of the PDE from any given solution u(x
k
). We express this by writing  

 

    : ( ) ( ; ) with   ( ;0) ( )k k k kM u x u x u x u x                              (4.4) 

 

For infinitesimal values of the parameter α,  

 

    
0

( ; ) ( ) [ ] where [ ]k k du
u x u x Q u Q u

d 

 
 

                       (4.5) 

 

The function Q[u]  Q(x
k
, u, uk , ukl , ...) in the jet space is called the characteristic of the 

symmetry (or, the symmetry characteristic). Putting  

 

( ; ) ( )k ku u x u x                                               (4.6) 

 

we write, for infinitesimal α,  

 

        δu = α Q[u]                                                      (4.7) 

 

      We notice that the infinitesimal operator δ has the following properties:  

1. According to its definition (4.2), δ is a linear operator :  

 

δ(F[u]+G[u]) = (F[u+δu]+ G[u+δu]) – (F[u]+G[u]) = δF[u]+δG[u] . 

 

2. By assumption regarding the nature of our symmetry transformations, δ produces changes in 

the fiber space while it doesn’t affect functions f (x
k
) in the base space [this is implicitly stated in 

(4.6)].  

3. Since δ represents a difference, it commutes with all total derivatives Di :  

 

δ (Di A[u]) = Di (δA[u]) . 

In particular, for A[u]=u,  
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δui = δ (Di u) = Di (δu) = α Di Q[u] , 

 

where we have used (4.7).  

4. Since δ expresses an infinitesimal change, it may be approximated to a differential; in 

particular, it satisfies the Leibniz rule:  

 

δ (A[u]B[u]) = (δA[u]) B[u] + A[u] δB[u] . 

 

For example,  δ(u
2
) = δ(uu) = (δu)u+uδu = α (Qu+uQ) .  

      Now, consider the characteristic derivative ΔQ with respect to the symmetry characteristic 

Q[u]. According to (2.7),  

 

ΔQ u = Q[u]                                                       (4.8) 

 

We observe that the infinitesimal operator δ and the characteristic derivative ΔQ share common 

properties. From (4.7) and (4.8) it follows that the two linear operators are related by  

 

     δu = α ΔQ u                                                        (4.9) 

 

and, by extension,   

 

δui = α Di Q[u] = α ΔQ ui ,  etc. 

 

[see (2.10)]. Moreover, for scalar-valued u and by the infinitesimal character of the operator δ, 

we may write:  

 

[ ] [ ] [ ] [ ]i i i j

i i i j

F F F F F
F u u u Q u D Q u D D Q u

u u u u u
   

     
       

      

 

 

while, by (2.13),  

 

    [ ] [ ] [ ] [ ]Q i i j

i i j

F F F
F u Q u D Q u D D Q u

u u u

  
    

  
                (4.10) 

 

      The above observations lead us to the conclusion that, in general, the following relation is 

true:  

 

      δF[u] = α ΔQ F[u]                                             (4.11) 

 

The symmetry condition (4.3) is thus written:  

 

    ΔQ F[u] = 0   mod   F[u]                                          (4.12) 

 

In particular, if u is scalar-valued, the above condition is written  
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    [ ] [ ] [ ] 0 mod [ ]i i j

i i j

F F F
Q u D Q u D D Q u F u

u u u

  
   

  
              (4.13) 

 

which is a linear PDE for Q[u]. More generally, for matrix-valued u and for a function F[u] of 

the form (2.1), the symmetry condition for the PDE F[u]=0 is a linear PDE for the symmetry 

characteristic Q[u]. We write this PDE symbolically as  

 

        S (Q ; u)  ΔQ F[u] = 0   mod   F[u]                                   (4.14) 

 

where the function S (Q ; u) is linear in Q and all total derivatives of Q. (The linearity of S in Q 

follows from the Leibniz rule and the specific form (2.1) of F[u].)  

      Below is a list of formulas that may be useful in calculations:  

 

 ΔQ ui = Di Q[u] ,   ΔQ uij = Di Dj Q[u] ,   etc.  

 ΔQ u
2 

= ΔQ (uu) = Q[u]u+uQ[u]   (etc.)  

 ΔQ (u
–1

)
 
= – u

–1 
(ΔQ u) u

–1 
= – u

–1 
Q[u] u

–1 
  

 ΔQ [A[u] , B[u]] = [ΔQ A , B] + [A , ΔQ B]   

 

      Comment: According to (4.12), ΔQ F[u] vanishes if F[u] vanishes. Given that ΔQ is a linear 

operator, the reader may wonder whether this condition is identically satisfied (a linear operator 

acting on a zero function always produces a zero function!). Note, however, that the function 

F[u] is not identically zero; it becomes zero only for solutions of the given PDE. What we need 

to do, therefore, is to first evaluate ΔQ F[u] for arbitrary u and then demand that the result vanish 

when u is a solution of the PDE F[u]=0.  

      An alternative – and perhaps more transparent – version of the symmetry condition (4.12) is 

the requirement that the following relation be satisfied:  

 

     ˆ[ ] [ ]QF u L F u                                                (4.15) 

 

where L̂  is a linear operator acting on functions in the jet space (see, e.g., [1], Chap. 2 and 5, for 

a rigorous justification of this condition in the case of scalar-valued PDEs). For example, one 

may have  

 

,

[ ] ( ) [ ] ( ) [ ] ( ) [ ] [ ] ( )k k k k
Q i i i j i j

i i j

F u x D F u x D D F u A x F u F u B x        

where the βi and γij are scalar-valued, while A and B are matrix-valued. Let us see some 

examples, restricting for the moment our attention to scalar PDEs.  

      Example 4.1. The sine-Gordon (s-G) equation is written  

 

F [u]   uxt  sin u= 0 . 
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Here, (x
1
, x

2
)  (x, t). Since sinu can be expanded into an infinite series in powers of u, we see that 

F[u] has the required form (2.1). Moreover, since u is a scalar function, we can write the 

symmetry condition by using (4.13):  

 

S (Q ; u)  Qxt  –  (cosu) Q = 0   mod   F [u]  

 

where S(Q; u)= ΔQ F[u] and where by subscripts we denote total differentiations with respect to 

the indicated variables. Let us verify the solution Q[u] = ux . This characteristic corresponds to the 

symmetry transformation [cf. Eq. (4.4)]  

 

   : ( , ) ( , ; ) ( , )M u x t u x t u x t                                   (4.16) 

 

which implies that, if  u(x,t) is a solution of the s-G equation, then ( , ) ( , )u x t u x t    also is a 

solution. We have:  

 

Qxt  – (cosu) Q = (ux) xt  – (cosu) ux = (uxt  sin u) x = Dx F [u] = 0   mod   F [u] . 

 

Notice that ΔQF[u] is of the form (4.15), with ˆ
xL D . Similarly, the characteristic Q[u] = ut  

corresponds to the symmetry  

 

         : ( , ) ( , ; ) ( , )M u x t u x t u x t                                    (4.17) 

 

That is, if  u(x,t) is a solution of the s-G equation, then so is ( , ) ( , )u x t u x t   . The symmetries 

(4.16) and (4.17) reflect the fact that the s-G equation does not contain the variables x and t 

explicitly. (Of course, this equation has many more symmetries which are not displayed here; 

see, e.g., [1].)  

      Example 4.2. The heat equation is written  

 

F [u]   ut  uxx= 0 . 

 

The symmetry condition (4.13) reads  

 

S (Q ; u)  Qt  – Qxx = 0   mod   F [u]  

 

where S(Q; u)= ΔQ F[u]. As is easy to show, the symmetries (4.16) and (4.17) are valid here, too. 

Let us now try the solution Q[u] = u .  We have:  

 

Qt  Qxx =  ut  uxx =  F [u] =  0   mod   F [u] . 

 

This symmetry corresponds to the transformation  

 

      : ( , ) ( , ; ) ( , )M u x t u x t e u x t                                 (4.18) 

 

and is a consequence of the linearity of the heat equation.  
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      Example 4.3. One form of the Burgers equation is  

 

F [u]   ut  uxx ux
2 

= 0 . 

 

The symmetry condition (4.13) is written  

 

S (Q ; u)  Qt  Qxx – 2uxQx = 0   mod   F [u]  

 

where, as always, S(Q; u)=ΔQ F[u]. Putting Q= ux and Q= ut , we verify the symmetries (4.16) 

and (4.17):  

 

Qt  Qxx – 2uxQx = uxt – uxxx – 2uxuxx = Dx F [u] = 0   mod   F [u] 

Qt  Qxx – 2uxQx = utt – uxxt – 2uxuxt = Dt F [u] = 0   mod   F [u] 

 

Note again that ΔQF[u] is of the form (4.15), with ˆ
xL D  and ˆ tL D .  Another symmetry is Q 

[u]=1, which corresponds to the transformation  

 

       : ( , ) ( , ; ) ( , )M u x t u x t u x t                                  (4.19) 

 

and is a consequence of the fact that  u enters F [u] only through its derivatives.  

      Example 4.4. The wave equation is written  

 

F [u]   utt  c
2

 uxx = 0    ( c = const.) 

 

and its symmetry condition reads  

S (Q ; u)  Qtt   c
2 

Qxx = 0   mod   F [u] . 

 

The solution Q[u] = x ux+ t ut  corresponds to the symmetry transformation  

 

          : ( , ) ( , ; ) ( , )M u x t u x t u e x e t                                  (4.20) 

 

expressing the invariance of the wave equation under a scale change of  x and  t . [The reader may 

show that the transformations (4.16) – (4.19) also express symmetries of the wave equation.]  

      It is remarkable that each of the above PDEs admits an infinite set of symmetry 

transformations [1]. An effective method for finding such infinite sets is the use of a recursion 

operator, which produces a new symmetry characteristic every time it acts on a known 

characteristic. More will be said on recursion operators in Sec. 6.  

  

 

5.  The Lie algebra of symmetries 
 

As is well known [1], the set of symmetries of a PDE F[u]=0 has the structure of a Lie 

algebra. Let us demonstrate this property in the context of our abstract formalism.  
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      Proposition 5.1. Let  be the set of characteristic derivatives ΔQ with respect to the symmetry 

characteristics Q[u] of the PDE F[u]=0. The set  is a (finite- or infinite-dimensional) Lie 

subalgebra of the Lie algebra of characteristic derivatives acting on functions F[u] in the jet 

space (cf. Sec. 3).  

      Proof. (a) Let ΔQ  ΔQ F[u]=0 (mod F[u]). If λ is a constant (real or complex, depending 

on the nature of the problem) then (λΔQ)F[u]  λΔQ F[u]=0, which means that  λΔQ. Given that  

λΔQ = ΔλQ [see Eq. (3.1)] we conclude that, if Q[u] is a symmetry characteristic of F[u]=0, then 

so is λQ[u].  

(b) Let Δ1 and Δ2 be characteristic derivatives with respect to the symmetry characteristics 

Q1[u] and Q2[u], respectively. Then, Δ1F[u]=0, Δ2F[u]=0, and hence, (Δ1+Δ2)F[u]  

Δ1F[u]+Δ2F[u]=0; therefore, (Δ1+Δ2). It also follows from Eq. (3.2) that, if Q1[u] and Q2[u] 

are symmetry characteristics of F[u]=0, then so is their sum Q1[u]+Q2[u].  

(c) Let Δ1 and Δ2, as above. Then, by (4.15),  

1 1
ˆ[ ] [ ]F u L F u  ,   2 2

ˆ[ ] [ ]F u L F u  . 

Now, by the definition of the Lie bracket and the linearity of both Δi and ˆiL  (i=1,2) we have:  

1 2 1 2 2 1 1 2 2 1

1 2 2 1

ˆ ˆ[ , ] [ ] ( [ ]) ( [ ]) ( [ ]) ( [ ])

ˆ ˆ( ) [ ] 0 mod [ ]

F u F u F u L F u L F u

L L F u F u

         

   
 

We thus conclude that [Δ1 , Δ2]. Moreover, it follows from Eq. (3.3) that, if Q1[u] and Q2[u] 

are symmetry characteristics of F[u]=0, then so is the function  

 

Q1,2 [u] = Δ1 Q2[u] – Δ2 Q1[u] . 

 

      Assume now that the PDE F[u]=0 has an n-dimensional symmetry algebra  (which may be 

a finite subalgebra of an infinite-dimensional symmetry Lie algebra). Let {Δ1 , Δ2 , ... , Δn}{Δk}, 

with corresponding symmetry characteristics {Qk}, be a set of n linearly independent operators 

that constitute a basis of , and let Δi , Δj be any two elements of this basis. Given that [Δi , 

Δj], this Lie bracket must be expressible as a linear combination of the {Δk}, with constant 

coefficients. We write  

 

       
1

[ , ]
n

k
i j i j k

k

c


                                                  (5.1) 

 

where the coefficients of the Δk  in the sum are the antisymmetric structure constants of the Lie 

algebra  in the basis {Δk}.  
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      The operator relation (5.1) can be expressed in an equivalent, characteristic form by allowing 

the operators on both sides to act on u and by using the fact that Δku=Qk[u]:  

1 1

[ , ] ( )
n n

k k
i j i j k i j k

k k

u c u c u
 

 
       

 
   

 

1

[ ] [ ] [ ]
n

k
i j j i i j k

k

Q u Q u c Q u


                                       (5.2) 

 

      Example 5.1. One of the several forms of the Korteweg-de Vries (KdV) equation is  

 

F [u]   ut + uux + uxxx
 
= 0 . 

 

The symmetry condition (4.14) is written  

 

         S (Q ; u)  Qt + Q ux +  u Qx + Qxxx = 0   mod   F [u]                        (5.3) 

 

where S(Q; u)= ΔQ F[u]. The KdV equation admits a symmetry Lie algebra of infinite dimensions 

[1]. This algebra has a finite, 4-dimensional subalgebra  of point transformations. A symmetry 

operator (characteristic derivative) ΔQ is determined by its corresponding characteristic Q[u]=ΔQ 

u . Thus, a basis {Δ1 ,..., Δ4} of  corresponds to a set of four independent characteristics {Q1 ,..., 

Q4}. Such a basis of characteristics is the following:  

 

Q1[u]= ux ,   Q2[u]= ut ,   Q3[u]= tux – 1 ,   Q4[u]= xux +3tut + 2u 

 

The Q1 ,..., Q4  satisfy the PDE (5.3), since, as we can show,  

 

S (Q1 ; u) = Dx F [u] ,    S (Q2 ; u) = Dt F [u] ,    S (Q3 ; u) = t Dx F [u] , 

S (Q4 ; u) = (5 + x Dx + 3t Dt ) F [u] 

 

[Note once more that ΔQF[u] is of the form (4.15) in each case.] Let us now see two examples of 

calculating the structure constants of  by application of (5.2). We have:  

 

1 2 2 1 1 2 1 2 1 2

4

12
1

Δ Δ Δ Δ (Δ ) (Δ ) ( ) ( ) ( ) ( ) 0t x t x t x x t t x

k
k

k

Q Q u u u u Q Q u u

c Q


         

 
 

 

Since the Qk are linearly independent, we must necessarily have  12 0 , 1,2,3,4kc k  . Also,  

 

2 3 3 2 2 3 2 3 2 3

4

1 23
1

Δ Δ Δ ( 1) Δ (Δ ) (Δ ) ( ) ( )

( )

x t x t x t

k
t x x xt x k

k

Q Q t u u t u u t Q Q

t u u t u u Q c Q


       

        
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Therefore,  1 2 3 4
23 23 23 231 , 0c c c c    .  

 

 

6.  Recursion operators 
 

Let δu=αQ[u] be an infinitesimal symmetry of the PDE F[u]=0, where Q[u] is the symmetry 

characteristic. For any solution u(x
k
) of this PDE, the function Q[u] satisfies the linear PDE  

 

        S (Q ; u)  ΔQ F[u] = 0                                            (6.1) 

 

Because of the linearity of (6.1) in Q, the sum Q1[u]+Q2[u] of two solutions of this PDE, as well 

as the multiple λQ[u] of any solution by a constant, also are solutions of (6.1) for a given u. Thus, 

for any solution u of F[u]=0, the solutions {Q[u]} of the PDE (6.1) form a linear space, which we 

call Su .  

      A recursion operator R̂  is a linear operator that maps the space Su into itself. Thus, if Q[u] is 

a symmetry characteristic of F[u]=0 (i.e., a solution of (6.1) for a given u) then so is ˆ [ ]RQ u :  

 

          ˆ( ; ) 0 when ( ; ) 0S RQ u S Q u                                     (6.2) 

 

Obviously, any power of a recursion operator also is a recursion operator. Thus, starting with any 

symmetry characteristic Q[u], one may in principle obtain an infinite set of such characteristics 

by repeated application of the recursion operator.  

      A new approach to recursion operators was suggested in the early 1990s [11,15-17] (see also 

[8-10]) according to which a recursion operator may be viewed as an auto-Bäcklund 

transformation (BT) [18] for the symmetry condition (6.1) of the PDE F[u]=0. By integrating the 

BT, one obtains new solutions Q΄[u] of the linear PDE (6.1) from known ones, Q[u]. Typically, 

this type of recursion operator produces nonlocal symmetries in which the symmetry 

characteristic depends on integrals (rather than derivatives) of u. This approach proved to be 

particularly effective for matrix-valued PDEs such as the nonlinear self-dual Yang-Mills 

equation, of which new infinite-dimensional sets of “potential symmetries” were discovered 

[9,11,15].  

 

 

7.  An example: The chiral field equation 

 
Let us consider the chiral field equation  

 

   1 1[ ] ( ) ( ) 0x x t tF g g g g g                                         (7.1) 

 

where, in general, subscripts x and t denote total derivatives Dx and Dt , respectively, and where g 

is a GL(n,C)-valued function of x and t, i.e., a complex, non-singular (nn) matrix function, 

differentiable for all x and t. Let δg=αQ[g] be an infinitesimal symmetry transformation for the 

PDE (7.1), with symmetry characteristic Q[g]=ΔQ g . It is convenient to put  
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Q[g] = g Φ[g]      Φ[g] = g
–1

Q[g] . 

 

The symmetry condition for (7.1) is  

 

ΔQ F[g] = 0   mod   F[g] . 

 

This condition will yield a linear PDE for Q or, equivalently, a linear PDE for Φ. By using the 

properties of the characteristic derivative, we find the latter PDE to be  

 

     1 1( ; ) [ , ] [ , ] 0 mod [ ]x x x t t tS g D g g D g g F g                    (7.2) 

 

where, as usual, square brackets denote commutators of matrices.  

      A useful identity that will be needed in the sequel is the following:  

 

  1 1 1 1( ) ( ) [ , ] 0t x x t x tg g g g g g g g                                      (7.3) 

 

      Let us first consider symmetry transformations in the base space, i.e., coordinate 

transformations of x, t. An obvious symmetry is x-translation, x΄=x+α, given that the PDE (7.1) 

does not contain the independent variable x explicitly. For infinitesimal values of the parameter 

α, we write δx=α. The symmetry characteristic is Q[g]=gx , so that  Φ[g]=g
–1

gx . By substituting 

this expression for Φ into the symmetry condition (7.2) and by using the identity (7.3), we can 

verify that (7.2) is indeed satisfied:  

 

S (Φ ; g) = Dx F[g] = 0   mod   F[g] . 

 

Similarly, for t-translation, t΄=t+α (infinitesimally, δt=α) with Q[g]=gt , we find  

 

S (Φ ; g) = Dt F[g] = 0   mod   F[g] . 

 

Another obvious symmetry of (7.1) is a scale change of both x and t :  x΄=λx,  t΄=λt. Setting 

λ=1+α, where α is infinitesimal, we write δx=αx, δt=αt. The symmetry characteristic is 

Q[g]=xgx+tgt , so that Φ[g]=xg
–1

gx+tg
–1

gt . Substituting for Φ into the symmetry condition (7.2) 

and using the identity (7.3) where necessary, we find that  

 

S (Φ ; g) = (2 + x Dx + t Dt ) F[g] = 0   mod   F[g] . 

 

      Let us call Q1[g]=gx , Q2[g]=gt , Q3[g]=xgx+tgt , and let us consider the corresponding 

characteristic derivative operators Δi defined by Δi g=Qi  (i=1,2,3). It is then straightforward to 

verify the following commutation relations:  

 

[Δ1 , Δ2] g = Δ1 Q2  – Δ2 Q1 = 0      [Δ1 , Δ2] = 0 ; 

 

[Δ1 , Δ3] g = Δ1 Q3  – Δ3 Q1 = – gx = – Q1 = – Δ1 g      [Δ1 , Δ3] = – Δ1 ; 
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[Δ2 , Δ3] g = Δ2 Q3  – Δ3 Q2 = – gt = – Q2 = – Δ2 g      [Δ2 , Δ3] = – Δ2 . 

 

      Next, we consider the “internal” transformation (i.e., transformation in the fiber space)  

g΄=gΛ, where Λ is a non-singular constant matrix. Then,  

 

F[g΄ ] = Λ
–1 F[g] Λ = 0   mod   F[g] , 

 

which indicates that this transformation is a symmetry of (7.1). Setting Λ=1+αM, where α is an 

infinitesimal parameter while M is a constant matrix, we write, in infinitesimal form, δg=αgM. 

The symmetry characteristic is Q[g]=gM, so that Φ[g]=M. Substituting for Φ into the symmetry 

condition (7.2), we find:  

 

S (Φ ; g) = [F[g] , M ] = 0   mod   F[g] . 

 

      Given a matrix function g(x,t) satisfying the PDE (7.1), consider the following system of 

PDEs for two functions Φ[g] and Φ΄[g]:  

 

     

1

1

[ , ]

[ , ]

x t t

t x x

g g

g g





    

     
                                           (7.4) 

 

The integrability condition (or consistency condition) ( ) ( )x t t x
     of this system requires that 

Φ satisfy the symmetry condition (7.2); i.e., S (Φ ; g)=0. Conversely, by applying the integrability 

condition ( ) ( )t x x t    and by using the fact that g is a solution of F[g]=0, one finds that Φ΄ 

must also satisfy (7.2); i.e.,  S (Φ΄; g) = 0.  

      We conclude that, for any function g(x,t) satisfying the PDE (7.1), the system (7.4) is an 

auto-Bäcklund transformation (BT) [18] relating solutions Φ and Φ΄ of the symmetry condition 

(7.2) of this PDE; that is, relating different symmetries of the chiral field equation. Thus, if a 

symmetry characteristic Q=gΦ of the PDE (7.1) is known, a new characteristic Q΄=gΦ΄ may be 

found by integrating the BT (7.4); the converse is also true. Since the BT (7.4) produces new 

symmetries from old ones, it may be regarded as a recursion operator for the PDE (7.1) [8-

11,15-17].  

      As an example, consider the internal-symmetry characteristic Q[g]=gM (where M is a 

constant matrix) corresponding to Φ[g]=M. By integrating the BT (7.4) for Φ΄, we get  Φ΄=[X, M]  

and thus  Q΄=g[X, M], where X is the “potential” of the PDE (7.1), defined by the system of PDEs  

 
1 1,x t t xX g g X g g                                              (7.5) 

 

Note the nonlocal character of the BT-produced symmetry Q΄, due to the presence of the 

potential X. Indeed, as seen from (7.5), in order to find X one has to integrate the chiral field g 

with respect to the independent variables x and t. The above process can be continued 

indefinitely by repeated application of the recursion operator (7.4), leading to an infinite 

sequence of increasingly nonlocal symmetries.  

      Unfortunately, as the reader may check, no new information is furnished by the BT (7.4) in 

the case of coordinate symmetries (for example, by applying the BT for Q=gx we get the known 
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symmetry Q΄=gt ). A recursion operator of the form (7.4), however, does produce new nonlocal 

symmetries from coordinate symmetries in related problems with more than two independent 

variables, such as the self-dual Yang-Mills equation [8-11,15].  

 

 

8.  Concluding remarks 
 

The algebraic approach to the symmetry problem of PDEs, presented in this article, is, in a 

sense, an extension to matrix-valued problems of the ideas contained in [1], in much the same 

way as [4] and [5] constitute a generalization of the Harrison-Estabrook geometrical approach [2] 

to matrix-valued (as well as vector-valued and Lie-algebra-valued) PDEs. The main advantage of 

the algebraic approach is the bypassing of the difficulty associated with the differential-operator 

representation of the symmetry-generating vector fields that act on matrix-valued functions in the 

jet space.  

      It should be noted, however, that the standard methods [1,4,5] are still most effective for 

calculating symmetries of PDEs. In this regard, one needs to enrich the ideas presented in this 

article by describing a systematic process for evaluating (not just recognizing) symmetries, in the 

spirit of [4,5]. This will be the subject of a subsequent article.  
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Abstract. Search and Rescue maritime operations depend on the suitable choice of ships 

that can complete satisfactorily their mission and rescue every person in danger, despite the 

circumstances. To achieve that, one must possess the proper type of ships for this kind of 

missions to endure weather and sea conditions and deploy at maximum speed. This paper 

proposes the necessary criteria to be assessed by the UTAstar method to achieve optimal 

selection.  

Keywords: Search and Rescue, SAR, Hellenic Coast Guard, UTAstar method, multiple 

criteria decision making. 

I. INTRODUCTION 

Decision making is admittedly a complex procedure aiming at the study and extensive 

analysis of the critical impact of all alternatives. It then tries to assemble all the 

demanding requirements of everything involved at the procedure. [7] The efficient use of 

such key tools will optimize the necessary quality of accurate information typically linked to 

the decision making and will enable the decision makers to accurately analyze and decide more 

precisely the possible alternatives. The possible selection of specific types of ships involved at 

maritime operations for Search and Rescue is undoubtedly in need of such a procedure.  

The specific type of boats used at maritime Search and Rescue operations naturally have to be 

carefully selected with a complex decision making procedure in order to take under 

consideration the time response, the work load, the unpredictable weather and sea conditions and 

the continuous economic demands.  

This paper describes and discusses the various criteria that need to be carefully considered, 

both quantitatively and qualitatively, and the used methodology that has to be followed for the 

aforementioned procedure.  

To address the problem of choosing Search and Rescue (SAR) ships, we use a multicriteria 

method called UTAstar [2] (Siskos and Yannacopoulos, 1985) which is an optimization of 

UTA[3] method (Lagreze and Siskos, 1982).  

Solutions are obtained for the existing fleet of the Hellenic Coast Guard. For security reasons, 

none of the ships’ capabilities will be presented. 

The main goal is to provide an executive committee with a practical tool to delegate the 

choosing of new coast guard ships for specific missions. 
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II. METHODOLOGY 

As aforementioned, the method used to assess the alternative SAR ships is UTAstar [2]. 

UTAstar presents a low structural indicator and the capability to compare the alternative ships 

pairwise. It can also handle effectively both qualitative and quantitative criteria. UTAstar method 

is characterized as a monotonic regression method for analyzing the decision makers’ a priori 

preferences (Matsatsinis, 2005) [7].  

UTAstar is a set of utility functions that are models consistent with the decision maker’s a 

priori preferences. In order to assess this set of utility function, the method uses ordinal 

regression method. Using linear programming, it adjusts optimally additive non-linear utility 

functions so that they fit data which consist of multicriteria evaluations of some alternatives and 

a subjective ranking of these alternatives given by the decision maker. 

Concluding the procedure, the UTAstar method will have ranked the types of ships from the 

most suitable to the least suitable one for maritime SAR operations. 

 

UTAstar Method
 [2, 4, 5, 7]

 

Overview 

 

This method consists of three things: a set of decision makers, a set of quantitative and 

qualitative criteria and a set of alternatives. At first, a questionnaire must be completed by each 

decision maker so as to evaluate each alternative over each criterion. Each criterion can be 

evaluated with a value within the boundaries (best and worst value) that have been a priori set 

and given to the decision maker. After that, the decision maker ranks all the alternatives. There is 

predefined structure of preferences (>, ~) with which one declares either absolute preference (>) 

or indifference (~) over a set of alternatives; this means that one can rank two or more 

alternatives at the same place.  

Once the decision maker expresses his judgment in a form of a ranking, the method estimates 

an additive utility function that is as consistent as possible with the decision maker’s opinion. 

This allows the decision makers to do an empirical evaluation and rank the ships regardless of 

the quantitative criteria. 

Then, all questionnaires are fed to the method in order to process them following four simple 

steps that are defined below. The result is a table of alternatives with a specific value that defines 

the final rank of each alternative. 

 

Definitions 

 

Assume                  is the set of the alternative ships offered for evaluation by the 

set              of decision makers over the set of criteria             . Each criterion   

represents a quantitative/qualitative monotonic variable. For each     , 

                               depicts the multicriteria judgment of the     alternative ship 

expressed by each decision maker.[7] 
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FIGURE 1. Depiction of vector g(ai) for quantitative 

criteria.[7] 

 

FIGURE 2. Depiction of vector g(ai) for qualitative  

criteria.[7] 

 
 

It is vital to clarify the scales of measurement for each criterion. Thus,     is the worst value 

for the criterion and   
  is the best value. All the values in between are put in      spacing. And 

so the scales for the   criterion is as follows:           
    

    
      

     
   . The value 

for the best and worst value, the monotony, the spacing    for each criterion is given beforehand 

by the system. 

 
TABLE 1. Spacing, value range, monotony of criteria. 

Best Value                    

Worst Value      
    

      
  

Monotony 0 if Best Value > Worst Value, else 1 

Spacing             

 

The     decision maker expresses his judgement and ranks each type of ship, which is then 

introduced at the vector                                  . The alternatives with small 

numbers signify better suitability and the alternative with   
    is the most suitable. The set of 

alternatives              is sorted according to the ranking of the decision maker. The 

judgment for each alternative over each criterion for the     decision maker produces the table 

below. 

 
TABLE 2. Criteria and alternatives for     decision maker. 

Alternative\Criterion            Ranking 

                        
             

                        
             

            

                        
        

     

 

The first thing one must do is to sort the alternatives according to the ranking for each 

decision maker. In this method, one can rank the same two or more alternatives. Hence, there are 

two cases compared pairwise; either one alternative is preferred (>) or both alternatives are 

ranked the same (~).  

Next step is the aggregation of the   criteria and the errors of underestimation        and 

overestimation         in one global value          as follows:  
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This global value is broken into additive utility functions           . For the evaluation of 

the partial utility functions, all values of   must be always expressed in terms of the values of the 

boundaries of each spacing of the     criterion, 

                
 
  

        
 

  
   

   
 
      

   
       

 
   

These partial utility functions represent the preferences of the decision maker from the least 

desirable alternative, where      
      to the most desirable one      

  . This is clearly shown 

in Figure 4. 

The restrictions of monotony are modeled with the variables     

         
   

       
 
                            

 

FIGURE 4. Additive utility function versus criteria. [9] 

 
 

The total value of the alternatives                    is expressed as the sum of all 

weights and is zero for the worst value. 

 
 

 
     

                  

     
 
      

   

   

                         
  

The process of comparing pairwise follows. It is symbolized with  . It takes into account the 

initial ranking and the utility functions.  

                                                                 

with the following restrictions where δ is the threshold and defined by the system. In this 

particular scenario is set to 0.05. 
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Linear Program 

 

To complete the process one must solve the Linear Program of minimizing the sum of the 

underestimating and overestimating errors of all the alternatives. 

                           

 

   

 

Subject to 

                                   
 

                                    
 

     

    

   
  

 

   

 

 

                               

 

Final Step
[9]

 

 

 In the final step, one must test the multiple or near optimal solutions of the linear program 

and in case of non uniqueness one should find the mean additive value function of those (near) 

optimal solutions which maximize the objective functions: 

                

 

   

      

where    is the optimal value of the linear program and ε a very small positive number. 

 

Advantages  

 

The greatest advantage in using the UTAstar method is the use of a double error equation, 

both for underestimation (  ) and overestimation (  ), leading to an optimized decision (figure 

3). The double error equation is used to make the alternative regain its position in the predefined 

ranking. It is an amount of utility that will be added or subtracted depending on the position of 

the alternative on the curve as shown in the following figure. 

Another advantage is the ability to take into account both qualitative and quantitative criteria; 

the experience one has is very important in search and rescue as the numbers cannot depict fully 

the sea conditions. 
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FIGURE 3. Ranking versus global value. Double error graphically explained. [9] 

 
 

Criteria and Alternatives 
 

Criteria Used for the Decision Making 

 

To correctly decide upon the types of the ships considered, one must carefully look upon 

many a criterion to judge wisely and derive scientifically to a conclusion. Therefore, each 

decision maker judges over the following 20 criteria, 13 quantitative and 7 qualitative. They 

cover as many key aspects as possible of a SAR ship and sufficiently examine the ability to be 

engaged in a SAR operation and the economic cost to do so. 

 
TABLE 3. Description and characteristics of the criteria used for the decision making. Values with (-) cannot be 

disclosed for security reasons. 

 

Criteria Description 

     

(Worst 

Value) 

  
   

(Best 

Value) 

   
Mono-

tonicity 

G
en

er
al

 C
h
ar

ac
te

ri
st

ic
s 

Maximum speed 

(miles/hr) 
Top speed for the type 18 45 3 0 

Autonomy 

Distance that the boat can 

travel and return to port 

without refueling. 

- - 3 0 

Transportation 

capability 

Number of persons 

(survivors, etc) that can 

carry safely back to 

shore/port 

- - 3 0 

Required 

personnel 

Minimum number of 

officers needed 
- - 3 0 

E
n

g
in

e 

C
h

ar
ac

te
-

ri
st

ic
s 

Engine 

suitability 

Check if the engines are 

proper and can withstand 

the stress of maritime 

operations at all weathers 

1 10 10 0 

Horsepower 
Total horsepower of all the 

engines on the ship 
- - 5 0 

E
n g
i

n
e C h
a ra ct er
i

st
i

cs
 

(c o
n t.
) Technical The specialization required 1 10 10 0 
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Specialization for a service to the ship or 

to address major problems 

on the ship 

Ease of finding 

spare parts 

The extent of specificity of 

the parts needed 
1 10 10 0 

Fuel Tanks 
The total amount of fuels 

that the ship can carry 
- - 4 0 

Fuel 

consumption 

The amount of liters 

consumed in an hour 
- - 4 1 

Lubricant 

consumption 

The amount of lubricant 

oils consumed  in an hour 
- - 4 1 

H
u
ll

 C
h
ar

ac
te

ri
st

ic
s 

Hull suitability 

The hull’s design (e.g. V-

shaped) suitable for 

extreme weather conditions   

1 10 10 0 

Sailing in 

extreme weather 

conditions 

The seakeeping of the ship 

and how it responds to 

extreme sea conditions 

(>8BF) 

1 10 10 0 

Maximum wind 

speed(BF) 

The maximum wind speed 

that the ship stays 

seaworthy 

1 10 10 0 

Material strength 

The material of the hull 

defines the weather 

conditions the ship can stay 

seaworthy 

1 10 10 0 

Self-righting 

If the ship has the 

capability to self-right or 

not 

0 1 1 0 

C
o
st

s 

Warranty 
If the manufacturer gives a 

few years warranty 
0 1 1 0 

Engine 

maintenance 

The cost of one engine 

service 
- - 4 1 

Maintenance 

cost 

The cost of all systems 

service 
- - 4 1 

Buy/Restore 

The cost to buy this type of 

ship or to restore a seized/ 

decommissioned one 

20.000.000 10.000 5 1 

 

Alternatives – SAR Boats Assessed 

 

The types of ships assessed by the decision makers comprise of the specific types of boats 

that the Hellenic Coast Guard currently uses for maritime SAR operations. For security reasons, 

only what can be found in open sources will be presented [8] and none other value of the criteria 

will be disclosed. 
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TABLE 4. Type of Hellenic Coast Guard SAR boats assessed. 

Model Role 
Length 

(meters) 

Displacement 

(tones) 

Number of boats 

in use 

Lambro Halmatic 60 Salvage Boat 18 37 10 

Sa’ar 4.5 OPV 58 450 3 

Stan Patrol 5509 OPV 58.5 700 1 

Vosper Europatrol 250 MkI OPV 47.3 300 1 

Class Dilos Patrol Boat 29 86 6 

Class Faiakas Patrol Boat 24.6 - 2 

CB-90 HCG Patrol Boat - Combat 15.9 20 3 

LCS-57 (Lambro 57) Mk I Patrol Boat 18.2 28 19 

LCS-57 (Lambro-57) Mk II Patrol Boat 19.2 27 16 
  

Decision Making Process 

 
A standard questionnaire for the mentioned types of boats was created. The quantitative 

criteria were precisely defined from the manual specification of each type. 10 decision makers 

with vast experience in these types of boats were asked to express their judgment over the 

qualitative criteria. After that, they ranked the considered 9 types of boats from the most suitable 

to the least suitable one to participate in a maritime SAR operation. 

The 10 questionnaires were input to a MATLAB-based UTAstar fully customizable program 

created for the purpose of this project. 

III.  RESULTS 

The MATLAB-based program solved the linear problem of UTAstar for the 10 evaluations 

of the 20 criteria for the 9 types of boats and resulted in the final weights of each type of boat. 

The final rank is presented below. 

 
TABLE 5. Resulting ranking of the existing fleet of HCG boats engaged in SAR operations. 

Suitability  

(Best to Least) 
Type 

1 CB-90 HCG 

2 LCS-57 (Lambro-57) Mk I 

3 Class Dilos 

4 Vosper Europatrol 250 Mk I 

5 Sa’ar 4.5 

6 Class Faiakas 

7 Stan Patrol 5509 

8 Lambro Halmatic 60 

9 LCS-57 (Lambro-57) Mk II  

IV. CONCLUSION AND PERSPECTIVES 

In this paper, a set of criteria for evaluating various types of boats using UTAstar[2] is 

presented. UTAstar has significant advantages to the evaluation. Firstly, it can be customized 

accordingly and add more criteria if needed. Moreover, it takes into account, not only the facts 

and the economic costs, but also the personal opinion of a decision maker. 
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The result shows that all factors were taken into account. A ship of the Hellenic Coast Guard 

that costs 20.000.000, 00€ did not rank first, although it is the fastest. There are necessary 

modifications to be done that will enable a committee to focus on a set of the abovementioned 

criteria which are more relevant to the nature of the intended use. The possible use of a weighted 

UTAstar method would benefit the decision making process. 

Concluding, the method presented is an extremely effective tool for any committee deciding 

over which type of boat/ship must be acquired. It can be progressively extended to more than 

SAR operations. One can accurately evaluate either the helicopters participating in SAR missions 

or even the types of ships of a naval fleet assigned to different kind of tasks. 
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