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Abstract. In this paper, we explore the dynamics of a qubit state prepared in a
double-well potential generated by the coupling of the system with the
environment through two independent field barriers. Thus, we adopt the path-
integral theory to reveal the system’s complex energy spectrum through the
construction of its Green’s function. In particular, we focus on the alteration of
the “Hadamard Time” defined in the current paper. We qualitatively study the
aforementioned alteration as a function of various parameters, such as the
magnitude of the field barriers, the relative size of the well related to the
internal barrier, and the shape similarity factor. We analytically define these
quantities inside the manuscript. We also discuss in detail the appearance of the
exponential decay rate. Since our results come in analytic form, they permit
their future numerical application in realistic physical and quantum computing
systems.
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INTRODUCTION

The qubit, which is the quantum version of the classical bit [1], corresponds to a
class of quantum systems possessing a characteristic property that can admit two
possible values. In general we focus our attention on this property and consider the
rest as frozen or out of interest. Thus considering the spin of an electron, the two
possible values are namely the spin up and spin down while considering the
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polarization of a photon, the horizontal and vertical polarization, [2,3]. As far as the
position of an atom or electron is concerned, the double well potential serves as a one
dimensional qubit where the atom or electron can be found in the left or right well.
Spin qubits can be realized by either solid-state or superconductor technology [4,5],
and at the same time position qubits (for instance the presence or absence of an
electron in a quantum dot) which are known as charge or electrostatic qubits, can also
be implemented either in a semiconductor manner [6,7] or using a Cooper pair box
[8,9] in superconductors. A combination of the above deals with the use of hybrid
spin-charge superconducting qubits, e.g. transmons, [10]. The interested reader may
find a review of the current semiconductor and super-conducting technologies in
[11,12].

The one-dimensional double well potential (DWP), depicted by Figure 3 that
follows, not only stands throughout the ages as a model for the study of some peculiar
but still most basic quantum phenomena, such as internal tunneling and energy
splitting, but at the same time is a widely used practical model for the study of a
variety of systems and processes in Physical Sciences. Out of the plethora of such
studies, we distinguish the Ammonia maser [13,14], the Bose Einstein condensates
[15-17], structural phase transitions [18], matter-wave interferometry in atomic
dimensions [19], realization of qubits, [20], and realization of beam splitters [21].

Quantum computation strongly relies on the realization, manipulation and
control of qubits. As far as the realization is concerned, a basic technique deals with
the construction of a double - well potential in such a way that the energies of its first
two eigenstates appear to have a large gap with the rest, [22,23]. For example holes in
quantum wells have the attractive property of a light effective mass which is highly
desirable for spin qubits since it provides large energy level spacing in quantum dots,
[24]. In addition it is well known from the late 90s that we can use linear components
of quantum optics technology, such as lossless symmetric beam splitters, for the
implementation of universal quantum gates such as the Hadamard gate, and to further
perform precisely the computation of quantum gates and algorithms, [25]. A Bose
Einstein Condensate beam splitter uses condensates instead of single particles and can
be realized with a DWP of tunable height, [21].

A single particle qubit implemented as a DWP, can be built up from two
coupled semiconductor quantum dots, where the band offset of different materials in
one direction results in an effective one dimensional DWP, [26-28]. Alternatively it
can be built up through the use of superconductor devices based on the Josephson
effect, where the effective DWP results via a RF-SQUID circuit [29-31]. A third
option comes from trapped ions in a DWP which are confined via the use of strong
magnetic and electric fields, [33-35]. However it is extremely difficult to confine a
trapped ion in different topology than the one of a in-line arrangement providing a
low scalability and in addition just as other quantum processors they demand
extremely low temperatures. Despite the complexity of the above mentioned systems,
their basic structure and dynamics can be explained through basic principles of the
one dimentional DWP, [35-37].

Thus, during the recent years many different schemes both theoretical and
experimental have been proposed for the implementation and manipulation of qubits
through effective one dimensional DWP. Mentioning a few we distinguish the
analysis of the phase evolution of the Cooper pairs wave function for obtaining a
DWP with cusp barriers for current qubits, [38], the DWP Josephson junction
between two d-wave superconductors, as an implementation of a phase or flux qubit,
[39], the analysis for designing a vortex qubit created in a DWP in a semiannular
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Josephson junction, [40,41], buckling nanobars which are nano-electromechanical
quantum coherent systems as to be forming a DWP for charge qubits, [42], quantum
dots in semiconductor nanocolumns prepared by epitaxial growth and where the
carrier confinement in the direction of the DWP can be achieved by conformal
overgrowth of a semiconductor barrier layer, [43], and many others.

A suitably engineered quantum well can stabilize the charge state of the qubit
against photoionization [44] and when an electric field is imposed on the DWP the
induced lack of inversion symmetry allows the possibility of different qubit
manipulation methods such as electron spin resonance, electric dipole spin resonance
and g-tensor modulation resonance, [45]. On the other hand the most exotic
phenomena of quantum mechanics such as quantum entanglement can be produced
through a DWP qubit and its interaction with a source of non classical light, [46]. In
addition, single and two-qubit operations can be realised through a high degree of
control over the tunnel coupling of the DWP, while spin-orbit coupling obviates the
need for microscopic elements and enables rapid qubit control through fast rotations,
[47].

As far as the dynamics of the qubit is concerned, decoherence was understood to
play a key role at the very beginning of quantum computation, [48]. Coherence time
refers to the length of time that a quantum superposition state can survive. The key is
to have a quantum superposition live longer than it takes to perform an operation or
experiment. Manipupation of the qubic destroys isolation and induces decoherence of
its state. It is experimentally observed that spin-based qubits maintain coherence for a
longer time length than electrostatic qubits [49].

Hence, all the above motivated us for producing the current work. In this paper
we study the dynamics, meaning the time evolution, of a qubit state in a DWP, which
is a potential that possesses two minima separated by an internal barrier, under the
additional influence of a two channel (barrier) field, as this is depicted by Figure 2
that follows. In a way, it continues previous works of ours on the DWP, [50,51]. Such
a model adds to the normal dynamics of the DWP the possibility of irreversible
dissipation to the free particle continuum. The work described in this paper,
constitutes a particular implementation of the path integral method to the model
potential which is depicted by Figure 2, where a barrier field is inserted in each side
of the unperturbed potential of the qubit, in order to qualitatively describe not only the
field-induced variation of energy splitting and/or time period of internal oscillation,
but the appearance of exponential decay rates as well, describing the dissociation of
the qubit. However we should have in mind, that when it comes to application, most
of the formal and mathematical work uses arbitrary parameters. Therefore, the
interesting information of such calculations is not in the absolute value of the
numbers, since it is hard to see how experimental conditions and measurements can
test exactly the model problem. In addition, the present treatment has allowed the
derivation of analytic formulas for the energies, the energy shifts, and energy widths,
due to tunneling. Such a potential has not been treated before analytically, making the
problem rather challenging.

The present paper is organized as follows. In the first section we describe in short
the path integral method to be applied, for the construction of the qubit’s Green’s
function, introducing the various phase factors to be used. Next we actually apply the
method and gradually construct the qubit’s Green’s function, by taking in account the
various phase factors that the system’s topology acquires through successive
propagation and reflection events. We also carry out the tedious algebra and calculate
the qubit’s Green’s function in a compact fractional form. In the third section we
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briefly review the dynamics (time evolution) of the DWP and define the Hadamard
Time. Next we bring out the significance of its energy spectrum, as far as the energy
splitting and the Hadamard Time are concerned. In the fourth section we reveal the
system’s complex energy spectrum, while in the next section we analyze the
dynamics of the model studied, concerning the alteration of the Hadamard Time and
the exponential decay rate, for various values of the parameters used. In this section

we introduce quantity sim(&,3) that measures the shape of the qubit’s internal

barrier relative to the one of its well. In the final section we conclude, and light our
most important results.

THE CONSTRUCTION OF THE QUBIT’S GREEN’S
FUNCTION VIA PATH INTEGRALS

As is well known, both the Schrodinger and Heisenberg picture in Quantum
Mechanics, deal with the basic dynamical differential equations involving either the
states or the operators, [52]. In deep contrast, Feyman’s formulation of path
integration [53], offers an alternative geometric picture and targets directly towards
the solution of the Schrodinger equation, which is constructed in the form of a
propagator.

Feynman showed how a system’s propagator can be determined by the “sum over
histories”, meaning quantity

K,=N j SO Dx(1) (1)

where the above functional expresses the sum over the classical paths and S stands for
the classical action. Thus, the square meter of the propagator, which is

|K(x,t, 5 x,,,)

the starting and ending point to be x; and x, respectively Its energy Fourier
transform, called the fixed energy amplitude [54], is the system’s Green’s function
K(E). Its construction reveals the energy spectrum of the system under study, since
the Green’s function can be written as a sum of energy pole terms of the following
form

? , gives the probability of finding the particle at the time #,, assuming

K(E)~Y - iﬂz

2)
The Z, energy poles may be real or complex, depending on the dynamics of the
system under study.

In their periodic orbit theory, Gutzwiller [56] and later Miller [57,58], showed
the way Green’s function can be constructed for one dimensional propagation, via the
calculation of all the possible changes in phase of the wave-function through the
corresponding changes of the action, during the system’s propagation over the
classical paths. Holstein [59] in his seminal work, put all these together, and nicely
showed how the fixed energy amplitude, can be used to achieve analytic continuation
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of the propagator to forbidden regions of motion, (potential barriers), where the
particle travells in imaginary times. His central result for the calculation of the
transmission amplitude via an infinite set of paths that the particle follows, can be
written in the compact form that follows

0 [ N()) m 5
K(E) = Y []=s ©

j=1 i=1 novn

In the above equation |, k, is a non local wave number of the particle connecting the

initial and the final point of propagation and defined by

K, = Nk)k(r) 4)

where i(y)= \/zm( E-V(y))/n* ,with E standing for the energy and V(y) for the potential

function. The index j corresponds to a particular path, while the index i corresponds to
a certain event along the path. Therefore, the symbol s;” represents each i event
factor that contributes to the /™ path normalized to the maximum change in phase
which is equal to 2x. Their total number is N(j) and depends on the path. These event

factors are of two types. One type represents propagation and the other represents
reflection from a turning point.

The s;” propagation event phase factors describe propagation (from a to b) in an

b 5 .
either allowed region (given by exp|:[k(y)dy] = 00 = 9, , where the U superscript

stands for the shape of the well), or in a forbidden region (from b to ¢) of motion

(given by exp[—iﬂ(y)dy:lzeg(b) =& with ﬂ(y):\/2m(V(y)—E)/h2 =ik(y), where

the M superscript stands for the shape of the barrier). The dimensionless phase
quantities 9(») and £») will be called the “qubit well magnitude” (qwm) and the “
qubit barrier magnitude” (gbm) respectively. A large qwm corresponds to a deep and
broad potential well while a large gbm corresponds to a high and broad potential
barrier. These quantities appear continuously in the text and figures that follow and
play a significant role in the qubit’s dynamics since the first contributes to the
oscillation of its orthogonal basis states and the second to the tunneling phenomenon.

The s;” reflection event phase factors describe reflections from turning points, (—i for

reflection from a turning point in an allowed region, + i/2 for reflection in a forbidden
region , and —1 for reflection from an infinite barrier).

However, someone notes that the reflection factors (except of course for the case
of an infinite barrier), do not take in account the relative size of the involved areas.
For example if a particle is reflected back to a classically allowed region of motion,
the reflection factor will always be equal to (-1), no matter how large is in magnitude
the potential barrier on the other side of the turning point. Clearly, this is an issue that
has to be solved and it actually does in the context of the present research, as will be
seen later. Both 94) and &) are dimensionless phase quantities. The above
mentioned rules are in total depicted by Figure 1 that follows and can also be found
in standard textbooks of path integrals, or quantum tunneling as well, [54,60]. For the
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present requirement of computing the overall transmission amplitude, the points r;
and 1, are in the classically allowed region of motion of the left well of Figure 2.

Propag_ation in_a classically Propagation in a classically
”””” T accessible region oo ingcocessible region
dashline {1t0251t06,7t08,9to 10} dotline {2t0 3, 4 to 5}
’ _ VY : .
exp[i[k(y)dy] = 9, cxp{*‘M(y)dyHEéb
a b
o, __________9
/A
| [N 4
5 I B I <P
: E
a b ¢
Reflection factors
O From an infinite barrier = -1 Total amplitude for overall propagation
Back to a classically between 1 and 10:
accessible region = -i
< Backto a classically AR - ZORX-)IOID = 30 Ey
inaccessible region = +i/2 2 2

FIGURE 1. The rules for the construction of the path integral amplitudes through the s;”

event factors. Here we depict a path example involving 9 event phase factors. The dash line
stands for propagation in a classically allowed region, while the dot line for propagation in a
classically inaccessible region. These regions are characterised so by the relative value of the
energy. The square reflection factor (-1) stands for reflection from an infinite barrier, the
circle reflection factor (-i) for reflection back to a classically allowed region and the elliptic
reflection factor (+i/2) for reflection back to a classically inaccessible region.

As far as the model is considered to have only one degree of freedom,
corresponding to the relative position of the atom or electron, it can be treated as a
one dimensional physical system. Thus we can apply the path integral method for the
construction of the Green’s function. In addition we should sketch the perturbed one
dimensional potential as in Figure 2 that follows:
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potential energy

X
Vi) 1.7,
>? = Internal barrier X
X /')Z = Field barriers X +f,
E /\
o arrb ¢ d e Y
L R position

FIGURE 2. The potential of a perturbed double well. There are five regions of motion: the
classically accessible regions L and R corresponding to states |o> and |1> , and the classically

inaccessible regions X, X, X of the internal and the field barriers respectively. The blue lines
/1 and f; stand for the electrostatic field imposed on the right and left well respectively while £
stands for the particle’s energy. The slope of f; and f; is proportional to the corresponding
field strength. There are four turning points of motion (a,b,c,d) and points r;, and 7, lie
between a and b of the left well.

Figure 2 describes the induced topology of the potential as this is determined by the
specific value of the energy. There are four turning points, meaning a, b, ¢, and d. In
this way we have five regions of motion, two classically allowed (L and R wells) and
three classically forbidden (barriersX, X, X). In order to construct the overall
transition amplitude for propagation between points r; and r, of region L, we divide
the problem into simpler ones.
For this we write K(E) as a sum of transition amplitudes involving specific regions of
motion each time, of the form:
L LE|l)  LRRX LRRXX
K(E)=—"— {YL T R } (5)

nsn

L,X,R
where Y  for example denotes the amplitude for propagation involving the
classically allowed regions L and R as well as the internal barrier, in all possible
ways. Table 1 that follows explains the symbols that we will use in the rest of the
manuscript, concerning the various amplitudes.
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SYMBOL DESCRIPTION

9 Contribution of a single propagation in a
classically allowed region as a function of the
ending point r for starting point a

£ Contribution of a single propagation in a
b classically forbidden region as a function of
the starting point b

Y (1) Amplitude for a single propagation from
E left to right inside region q between points r;
and r,
Aq (r;m) Amplitude for infinite repetitions of the

propagation between r; and r, in all possible
ways, while staying at region q

{ —5n } Overall amplitude for exhausting
P&, 4 combination of the regions p and q
propagating between r; and r,

YP Total contribution to the Green’s function
through the exclusive combination of regions
pand q

TABLE 1. Basic symbols and their definition, in the current manuscript.

In Appendix A we separately develop each amplitude of eq.(4) providing the basic
steps. In the lines that follow we give an example by calculating the contribution of

the L well. Transition Amplitude Y* involves propagation inside the classically
allowed region of the left potential well where the state |0> lives. It is constructed by

fundamental amplitudes, for example ZL(r;a) that connects points r and a in a single
straight path moving from right to left, (the arrow denotes direction), and by

amplitudes 4, (r;a), that connect r and a with infinite repetitions (including
reflections) in all possible ways. In this way we can write:
X! = 4,(r35) + A (r3a)(D) {4, (@:a)(~D) A (a;7, )+ 4,(a:b) (=) 4, (b;13)

6
+ A, (73 b)) {4, (b;b)(=) A, (b1;) + 4, (bra)(=i) A, (a31,) | ©

Table 2 that follows contains the calculation of the above mentioned fundamental
amplitudes:
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Fundamental amplitudes of area L Function of event phase factors
ZIL(rl;rz) grz /gn
4,(r;0) g,
A (r;b) 9,19
A (a;1) 3,
A (b;n) 3,/9,
. N |
4,(a;a) [2Re(4,) 3|
. - -1
A fore()

TABLE 2. Calculation of the amplitudes involved in the propagation inside region L.

Giving a second example, the 4, (a;a) amplitude comes from the infinite repetition
of the (a;a) propagation, including the reflection factors, which is

= = 1 1
A(a;a)=1+83 (-)G (=) +...= —=— = 7
L (a;a) , (=), (=) 1257 23 Red, (7
It is also clear that
= 1
A (a;b)=9 A4, (a;a) = — 8
L (a;b) = 8,4, (a;a) 2Red, (8)
Putting all these together we get for the Y* amplitude the following expression
o g2 .9 .
Yr=8/8 + lvz —i lgbv -8>="-i9. 9 9)
148, 3.9 3, 2
Introducing 9,7/* =29, we finally get for the Y* amplitude
: Im3** 2Im9*"* Im g~
_ i m 0, (10)

3% ' 3 Red
r b b

Equation A.15 of Appendix A gives Green’s function for the total amplitude
contribution, as

m 1

K(E) = w2k L+X+R+X . .la q
Hon 21-Y (rl,a)Asz(a,a) 19b Re 19b

(1)

where the amplitude YLAARTX s defined by equation A.12 of Appendix A and
given as
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o ~ Im9~"*
YLHX+RX _ 5, "

Imgz“‘lmgz/" 1

g, - (427,) 9 Red,
- +

4Red,—E28,+

and the field barriers X and X acquire phase factors to form the following barrier

Tr(y)dyH =¢ " =5,

0

e

Jr(y)dyH =e’”" =y, and exp[—

d

magnitudes exp[—
52

I
respectively, and where of course 4. (a;a) =——2—.
pectively A =5

SHORT REVIEW OF THE TIME EVOLUTION OF A
QUANTUM STATE IN A DOUBLE WELL POTENTIAL

In the present chapter we briefly review the dynamics concerning the time
evolution of a quantum state in a double well structure, as this can be found in any
standard textbook of quantum mechanics and quantum tunneling [14,61]. For this, we
assume to have the two initially separated lowest, degenerate eigenstates of the two
independent unperturbed wells, namely |O> and |1> with energy E,, that do not overlap
with each other, as depicted by Figure 3 that follows. These states will interact through
the finite potential barrier that separates the two wells to construct the eigenfunctions
of the DWP. Since the potential is an even function, its Hamiltonian commutes with
the parity operator. Thus we can construct an orthonormal basis of symmetric and
antisymmetric states, as follows

s=7{10) [0} and A= {lo)-|1) (13)

In fact we can mathematically describe the finite potential barrier as a perturbation
matrix of the form U = -do, [62], where of course o, stands for the Pauli matrice:

(%! 14
%= o (14)

o

Hence the total Hamiltonian becomes equal to H :( ] Diagonalization of the

o

Hamiltonian gives two new eigenvalues for the symmetric and antisymmetric state,
which are respectively: £, =E —dandE, = E + 6, whose energy distance is equal

to 4=26. Thus, the degeneration of the two initial states is removed, and an energy
splitting appears of the corresponding energy levels.

Let us assume now that at /=0 the system is prepared in the state |O> of the left well,
which can be written as a superposition of states of the DWP:
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T(t=0)=|o>=i{S+A}. The time evolution of the state will then be

J2

Y(t) = L ¢ BG4 o E gl Ty terms of the initial eigenfunctions of the two
2

separate wells, we can write
W(1)=e """ {cos(5t/h)|0) +isin(5t/h)|1)} (15)

We particularly focus on the “Hadamard Time”, defined as the time needed for the
initial state of the qubit (|O> or |1> ) to come in an equally weighted superposition of the
two complementary orthogonal states, 0) and |1> In the context of the present
research activity this time is defined as the Hadamard Time, since the action of the

Hadamard gate on |O> is actually H |0> = %ﬂO) +|1>}. Thus, the time needed for the

initial state |0> to come in an equally weighted superposition of itself and its
complementary state |1> is equal to

h
THd :E (16)

Hadamard Time comes as a function of the energy difference of the two lower states of
the DWP. Thus, in order to explore the system’s dynamics under the action of the two
field barriers, we must first analyze its energy spectrum. The diffusion of the initial
state to the continuum set of states through the field barriers, turns the spectrum into
complex. Hence, the real part of the spectrum determines the alteration of the
Hadamard Time while the imaginary part determines the state’s decay rate to the
continuum, meaning decoherence.

Viy)

FIGURE 3. The doublet splitting in a DWP. The two initially degenerate states |O> and

|1> with energy FE, of the two separate unperturbed wells, interact through the internal

potential barrier X and form the symmetric (S) and antisymmetric states (A) of the full
potential, with energies £, — 6 and E, + § respectively.
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THE ENERGY SPECTRUM OF THE FIELD PERTURBED
DOUBLE WELL

As we have already seen, the step by step construction of the total Green’s
function, reveals gradually additional fractional pole terms, coming as the extra
contribution of each new region of motion. In turn, these poles correspond to the
energies of the system due to the qubit interaction with the field barriers.

Thus, for each fractional contribution of the total Green’s function, we need to
expand the denominator around the eigenvalues E, of the unperturbed well. In this
way, we calculate the energy shift that takes place, coming from both type of barriers,
namely the internal qubit and the field diffusion barriers. In Appendix B we
analytically calculate the energy poles that arise through the above described method.
In the lines that follow we give an example of such calculation, concerning the poles
of the unperturbed quantum well meaning region L.

Region L contributes with the pole term:

Pole,' ~{9,,Red,, | (17)

The poles of the fractional term arise naturally from the condition Red, =0, which
can be equivalently written as

Tk(y)dyznﬂ+7z/2 (18)

Assuming a parabolic type of potential well, as depicted by Figure 2, meaning a
2

function of the form V(y)=x(y—y, )2 , where x = 2??

with T being the period of

classical oscillations and y, corresponds to the bottom of the well, we can actually
calculate the integral in (18) and find the energy poles as

Enz(n—kéjhw (19)

which are the exact eigenvalues of the harmonic potential. Giving another example
we can assume a rectangular potential well of infinite walls, which is approximately
true as long as we can assure that the internal barrier is much higher than the lower
eigenstate of the well. Then we would have instead of (10) the following:

Img7* 2ImJ* Im 9

=—al—— t 3 3
g, 9 Im3I,

(20)

and consequently
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7 h*
= 21
= 2m (b a) @)

b
[k(y)dy =

which of course are the exact eigenvalues of a particle in a box. Thus, the pole term
of (17) reveals the eigenvalues of the isolated unperturbed potential well.
According to Appendix B the energy eigenalues for the rest region amplitudes go as
following:

a) Regions L and X contribute with the perturbed eigenvalues

2v* =E, =&, (a s} (22 {a"9))) " ~i(d"9m)) = b (22)
where the subscript n denotes calculation on the eigenvalue £, and where the symbol

d"" denotes derivation with respect to the eigenvalue £,

b) Regions L, X and R contribute with the perturbed eigenvalues

{{ {dES(b)}[ ] {a" rf(b)}é }
{a" 9(19)}"22[1—‘”’%4 ] b +{
{—{dﬁ@(b)}[l - "ZZ"ZJ {a" §(b)}i}

¥

N‘tf‘m

I+

N‘U\w)

(S o= +{aEB)fé, 5 ({dﬁé(b)})}

N‘U\w

e (amE ))&, 7 ({a90)))
(23)

c) Regions L, %X, R, X contribute with the perturbed eigenvalues

3 g 3 z 3 £ z : b
{%“ {amam(4-4,7) 228, amcol} 24 [{df"af(b)} &, (a0 - ({5())}5]}
VanSon) TS

ZL’;’RifE :
_ _ I o _ d=3b)\y,
{{a 3@} (4-& ) 228 (" Em} +128, | {a" @)} v, {d"3b)} -2 w
(7,1 fb,)x) _'fb,n
FAE ( {d"Eb)} = gi{a/bg(b)} {dbS(b)}mJ
» " 4 Vau' =S
_ _ _ e | _ _ d*3(b
Ha80))(4-8.7) 228, {a Emlf +128, | {a e} 7 &, {d" 8| -2 A IO)
(}/d éb ) §b
(24)
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d) finally regions L,%, R,%Xand X contribute with the perturbed eigenvalues

0))

[+2§, —‘Zj{{dﬁ (b)}[4+§, —;]—i{d“” (@) +2¢,{d" §(b)}}
[2452 _"j{z; ({d“”"f(b)}xf {dES(b)}+2{d59(b)} b —5 J—

{{d”‘g(b)}[—4 +E 2 —5"4"2} +2¢ {d" §(b)} {dL 5(a)}}

( {d" )} + {dfr«S(a)}]}

LERZS
Zy =E, -

{25; [{d"””f(b)} £&,'{d"3b)| +2{d"3(b)} ;ﬂ.;’ _7 ;2 ] —%”G{d“ (b)) + {dﬁS(a)}j}

(s oo o) sl 3] s |5 (s i

[ ) 54 J{ [a"3)) [4+g; —57]+2e“”{dfg’(b)} {dEﬁ(a)}}

{dfy(b) (4% —‘lj 2, {d &)} - Ous {dfé'(a)}}
2 E, E g E Q gh.nil Ad,nz amz 1 E, Q E S 2
{2, [d f(b) {d "9(b)}i2{d fly(b)}m_yémz]—z(z{d 9(b)}+{d 5(a)}j}

(25)

FIELD INDUCED DYNAMICS OF A QUBIT STATE

The time evolution of a qubit state in a double well structure, as this is induced by
the presence of two independent field barriers depicted by Figure 2, concerns the
alteration of the Hadamard Time, as well as the appearance of the exponential decay
of the initial state into the continuum. As we have already seen the spectrum turns to

be complex taking the following form for the lowest state: £ +0E, —i % As far as

the real part is concerned, the result is the splitting of the £, which is the lowest
energy of the unperturbed wells, into two new states, with energies equal to

E¢=E,+0E, , E, =E, +0E, (26)
and then the Hadamard Time is given according to (16) as

h

Thary :m (27)
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where the subscript /* generally denotes the presence of a field barrier.

In the absence of the field barriers the WKB approximation is obtained as [24,26]

2
T

T =" 28
HdIWKB ~ 5, z. (28)

where w is the frequency of the classical periodic motion between turning points a
and b corresponding to energy E, . The above result in (26) is obtained using the linear

connection formulae. In the lines that follow we calculate the Hadamard Time
separately for the cases of 1) the unperturbed DWP, ii) the double well plus field
barrier f; and 1iii) the double well plus both field barriers + f; and +f> depicted by
Figure 2.

1) The case of the Unperturbed Double Well Potential:

According to (23) the real parts of the doublet splitting, read

1%{—%%)}[1— J (a=&() ‘5“}
{—{d@%}[l—%] W(b)ﬁ“} “’E"“{{dff(bﬁéﬁ({df”@(b)})}

2

(29)
Thus the Hadamard Time is given as:
;{[1 _ 5}:2 J — Sim(gg, g)%}
{[1 _«fbon ’ a ‘fh,o} n é:b,o {Sim(é?: g)fbo +1}2
) 4 2 2 ’
TL,X,R =T
Hd Hd IWKB z £
+1{(1—§b’° ] G) e }
2 4

{(l e J sim(,9) gbo} : %g {Sim(g’g)gbso _1}2

(30)

which of course goes far beyond the WKB expression. In fact, as can clearly be seen,

eq. (30) reduces to (28) by keeping only the dominant terms (omitting terms like
e or smaller), and taking the barrier to be energy independent, meaning taking

{d g (b)}: 0, for a small energy area around E, where the splitting takes place.
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Thus we are motivated to further explore the energy dependence of the Hadamard
Time. For this, we introduced in (30) quantity

{d*Eb)|/{d"3(b)} = sim(£,9) (31)

defined as the “shape similarity factor” between the barrier and the well, given as the
ratio of the change in barrier magnitude to the change in well magnitude, as energy

increases, some kind of &(b) derivative with respect to 4(b). It is easily understood
that the above quantity is negative since 9(p) increases with the increment of the

energy while £(b) decreases. The above are depicted by Figure 4 that follows.

positive change in well magnitude case of a small in absolute value sim (f, g)

\ E+6E
N\

case of a large in absolute value sim (é‘:,g ‘Slm(é:’ 19)‘ =

blue area

green area

E+5E

negative change in barrier magnitude

FIGURE 4. The variation of the shape similarity factor Sim(é2 ,g) for two different

cases of the potential barrier shape, relative to the one of the potential well. Note that the blue
colour denotes a negative change in the barrier magnitude as energy increases (shorter
barrier) while the green colour a positive change in the well magnitude (deeper well).

In Figure 5 that follows we depict Hadamard Time as a function of the similarity
factor for two different values of the qubit barrier, employing (30).
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FIGURE 5. The variation of the Hadamard Time, (normalised to the WKB expression), as
a function of the similarity factor sim(&,.¢) which relates the change of the field magnitude

to the change of the well magnitude with energy increament, for two different values of the
qubit barrier magnitude. For each case the Hadamard Time becomes minimum for a certain

value of the similarity factor sim(&,9).
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1) Field barrier f; active and field barrier f> inactive

According to (B-9) of Appendix B the real parts of the energy splitting, read

12930{{df“é(b)}(zt—éh.:)rZci.(,{d@é(b)}}+2£b_,:‘({dﬂ'5<b)}¢Eh,,,{df‘fé(b)}—ZW]}
Vio bo)] ~ Sbo

pLERE _ E -

o

{{dm)}@—a;)izf,,,o{d%aw}}z+{za:[{d%ab>}¢ao1 {dfo@@}—#?%]}
Va0550) T Sho

(32)

For the present purpose we currently disregard the energy dependence of the field
barrier and write the real parts of the energy splitting as follows

—0f —AZ 3 j;d,o2
{+8§b,,,+2<fb,,, _4[?5—1} (33)

E, Q 7741_02 z
{16{d 3(1;)}}{1 +(7df —c?,,_,,zj }

Thus the Hadamard Time is given as:

~ - 2
1 é 02 77 02
led =T mxs (I—FbT’ 1+ W =
d,o b,0

(34)
5 z 2\ 26m \?
) = 1+§"—’° 1+ —i,
T, Hd |WKB 4 e -1
where we have introduced the dimensionless quantity
sm=In(& /7,) (35)

as a measure of the difference in magnitude between the qubit and the field barrier f;.

In Figure 6 that follows, we depict the variation of the ratio 7, 1;:; I'T,, s With quantity

om. It is clearly seen that as dm increases, the normalised Hadamard Time tends to
unity, since then the field barrier becomes almost impenetrable and the Hadamard
Time coincides with the one from the WKB approximation. On the contrary when the
difference in magnitude between the qubit and the field barrier becomes negligible,
Hadamard Time increases a lot.
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Tf.

Hd

18 4
Hd /WKB
16 4

14

qubit barrier magnitude 0.2

12 4

10 4

Normalised Hadamard Time

0.596

om izln(f,, 17,)

difference in magnitude between qubit anf f, barrier

FIGURE 6. The normalised Hadamard Time as a function of the difference in magnitude
between the field and the qubit barrier. Hadamard Time tends to the WKB expression as the
difference in magnitude increases and reaches a value twice the WKB one, for a difference in

magnitude of the two barriers equal to 0.596.

1) Both field barriers f; and f; active.

According to (B-12) the real parts of the energy splitting, read

S 2

a0

2

S 2
a0

54 ]{{d"r”g(b)}[4+§lf -

+(—2§M2 S

S 2

a

4

]_

[?251_“ -

FLRREE _ E - 4

]{25}; [{dﬁ»f(b)} £&, ' {d"9(b)| +2{d"3(b)|

{d"5(@)}+2¢,, {df"f(b)}}

2
a0

2

fb.nilfd,nz
-~ 2 g 2
Vao _é:h,o

G{dﬁ@(b)} +{dﬁ»5”(a)})}

J_

0 S 5

a0

4

a8 2 a2z, aéo)

{23,,; ({d”’f(b)} F&, " {d"9(b)} +2{d" I(b)|

_%
2

{df"g(a)}}z +

|

S 2
O,

2

g -1z 2
S0 Vao

- 2 _g 2
Vo _gb.u

[;{dggwﬁ*{dﬁswﬁ)y
(36)

Thus, we get for the Hadamard Time the following expression:

Jisfa 1 2
Tud — T;Id THd
1 2
THd/WKB THd/WKB (Tnd - T11d )

with
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[ o Avgz}z[ A( ezam]]z
—4£25im(&,9)8,  —sim(5,9) O 4 F26, | 1-2

2(top sign) 2 325’" _1

Tl(dawn sign) __ T

Hd — " HdIWKB a2
~ 5 28m _ ~
{_45}),0_ 2 }(1214 ; }—25@1,52,58 *

e " -1 (38)
sim(€,8) 48, +28, | 267, =2 ||+
o - 52 _ -1 52
{sim(&g) ié‘iﬁ ;’0[25;,,0%4“}}

In Table 3 that follows we include the values of various parameters that were
employed in (38), as these were taken from our previous results.

Parameter Value
Qubit barrier strength 0.20 / 0.35
¢o(A) (Figure 5)
Difference in strength 0.596 / 0.693

sm=In(&/7,)
for 200% of the WKB

value of the Hadamard
Time (Figure 6)

sim(E,9): similarity 139 / 1.69
factor for minimum value
of the normalized

Hadamard Time in
(Figure 5)

) field barrier 0.35
magnitude

TABLE 3. The values of the parameters used in (38) for producing Figure 7

Thus we produce Figure 7 that follows, where the variation of the normalised
Hadamard Time as a function of the similarity factor sim(J,$) is depicted.
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FIGURE 7. The variation of the normalised Hadamard Time as a function of the similarity
factor sim(o ,9) which relates the change of the ¢ field barrier magnitude to the change of

the well magnitude with energy increament, for two different values of the qubit barrier
magnitude.

As far as the imaginary part is concerned, we should point out that this contributes to
the exponential decay rate of the initial state. This can be seen by taking the Fourier
transform of the Breit-Wigner or Lorentzian decay amplitude

! (39)
T
E—(E;+5Eo—zzfj

Gr(E) =

and extending the spectrum to the full real axis —oo < E < oo instead of being bounded
from below 0 < E < oo (“Fermi’s approximation”). The time evolution of the decaying
state is then given by

~i(E +OE, )t/ =Tt /21

P()=e ¥ (0) (40)

Thus the survival probability of the initial state is given as

Py~

(41)
and this is called exponential decay. The decoherence of a quantum superposition
state due to its interaction with the environment leads to an exponential decay law,
[65,66]. Thus, A /T'o is a meter of the qubit’s decoherence time, meaning the time
interval that the coherent superposition state survives. However if we do not
necessarily extend the spectrum we will also find non exponential contributions for
both small and large times. As far as the region of large times is concerned the non

exponential contribution dominates the system’s evolution and takes the following
form, [64],
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P(1) ~ H(E +8E,) + rzz }12}1 (42)

In Figure 8 that follows we depict exponential decay rates I'-™** and T
which are twice the imaginary parts of (B-9) and (B-12) respectively, as a function of
the similarity factor sim(&,9), for the parameter values contained in Table 5. In
addition we extract the value of 18.2 for the similarity factor sim(S,9), taken from
Figure 7, which makes the corresponding Hadamard Time a minimum.

f, magnitude = 0.5

=0T O f, magnitude =0.5and f,=0.6  —
[} o3 O
E 3
® 0,07 [ )
m Loz <
o a L Py
L 6 025 =
LL ) = | ('D
5 s
Py 1 Fo20
2 00 | >
o Lois &
> vy)
T 0044 L &
o
b Lot =
a -
0,03 @
F005
©
=}
0,02 T T T T T T 000 2
0 2 4 6 8 10 h

shape similarity factor sim(&,9)

f, magnitude = 0.5

o 008 T —e—f magnitude =0.5 and f,= 0.5 - 0.22
)
) 020 @
= 8
5 %071 Lo1s &

[an]

© b 10,16 §
o 006 T
i F014 o
® =
Lo12 T
) 0,05 - o)
© L010 o
o w
> 004 008 ©
g 3.
8 Loos @
@
O 0034 0,04 il
Loos =
Looz 3
0,02 T r T r T r T v T v T Q
2 4 6 8 10 N

shape similarity factor sim(&,9)

http://nausivios.hna.gr/

C-32



PART C: Natural Sciences and Mathematics

— f, magnitude = 0.5
0,08 T f, magnitude =0.5 and f,= 0.4 n
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Decay Rate of Field Barrier f,
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FIGURE 8. Comparison of the exponential decay rate for barrier field f; only active and
both barrier fields f; and f; active, as a function of the similarity factor Sim(é? s 9 ), for three

different cases as far as the relative magnitude of the field barriers is concerned: a) f;< f
b) fi=1>, ¢) fi>f> . Note that the two rates come in different orders of magnitude.

CONCLUDING REMARKS

In this paper, we studied the dynamics of a positional-based qubit structure as
this is induced and controlled by the presence of two independent electrostatic fields.
Our attention focused on the Hadamard Time, defined in the present paper as the time
needed for the initial state to come in an equally weighted coherent superposition of

the two orthogonal qubit states |0) and |i), through the particle’s probabilistic

appearance in both quantum wells. First, we analytically solved the model providing
analytical relations for the system’s Green function and energy eigenvalues. Second,
we gave analytical expressions for the intrinsic qubit’s time needed for oscillation
between its orthogonal states and more than this of the time required for decoherence
to appear through exponential decay.

In quantum computation, knowledge of the Hadamard Time is significant since it
corresponds to the knowledge of the time needed for quantum coherent superposition
to appear. The latter makes a substantial difference to quantum computing compared
to its classical counterpart and makes quantum calculations much faster and the
quantum computational system itself much more capable, [1]. Thus, in order to carry
out quantum computations we should, at first, adjust the clock frequency of the
computational system to the “frequency” f =1/Tygq of series of revivals of the
superposition state. One can produce entangled states through such suitably prepared
superposition states, [67]. Thus, frequency adjustment is required for quantum
cryptography as well. In addition, our computing system gets less complicated since
now no Hadamard gate is needed. At the same time, decoherence is unavoidable due
to the qubit’s interaction with the environment. Decoherence destroys quantum
superposition and forces the system to decay. The exponential decay rates that we
analytically calculated in the current paper provide a decoherence time scale for the
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duration of the computational calculations, maintaining their effectivity and accuracy.
Decoherence time should be much longer than the period of revivals of the
superposition state, [48]. In addition, the analytic study of the above phenomena
through path integral theory provides more insight into the physics of the system.

In particular equation (30) gives the Hadamard Time in the case of the
unperturbed or ideally isolated qubit. Clearly our result goes far beyond the WKB

expression. But most importantly introduces quantity sz'm(g2 , ,§)’ defined as the

similarity factor that relates the shape of the well to the one of the barrier as explained
in Figure 4. As far as our knowledge goes this quantity has never before been
introduced in the international bibliography. It is some kind of correction to the phase
event reflection factors that contribute to the path integral calculation, (see the
discussion at the end of the first section). In Figure 5 that follows eq. (30), we have
depicted the dependence of the normalized (to the WKB expression) Hadamard Time
on the similarity factor gim(&,9), for two different values of the qubit barrier

magnitude. The Hadamard Time receives a minimum value. Both the minimum and
the minimum position are increasing functions of the qubit barrier magnitude. Thus
the DWP can be suitably engineered for Hadamard Time to receive its minimum
value. The latter is very important since then small variations in the qubit’s potential
will not alter Hadamard Time and consequently will not change the time scale of
computation ensuring stability. Hadamard Time tends to a constant value when the
well and the barrier are not shape related, sim(&,9)=0, but increases unlimited as

sim(&,9) increases, since then the qubit barrier becomes almost impenetrable.

For the case of the field barrier f; alone, which permits the interaction of the
qubit state with the continuum, eq. (33) describes the dependence of the Hadamard
Time on the difference in magnitude of the qubit and the field barrier, with the later
expressed through quantity om defined in (34). In Figure 6 we depict the above
mentioned dependence for a qubit barrier magnitude equal to 0.2. It is clearly seen
that the Hadamard Time tends to the WKB expression as the difference in magnitude
increases, since then the field barrier becomes impenetrable. On the other hand as the
magnitude of the field barrier is lowered approaching the one of the qubit barrier,
Hadamard Time increases, since then tunnelling is equally preferable by both
mechanisms: internal oscillation and external diffusion to the continuum. Giving an
example, Hadamard Time becomes twice the WKB expression for a difference in
barrier magnitude nearly equal to 0.6. The field barrier magnitude is directly
dependent on the field strength imposed on the qubit. Hence a suitably engineered
DWP and a suitable applied electrostatic field f;, including its starting point and slope,
uniquely determine the computational time scale.

When both field barriers are active, we are interested not only for the change in
Hadamard Time but for the change of the exponential decay rate as well, compared to
the case of the field f; alone. Thus, in Figure 7 we depict the dependence of the
Hadamard Time with the factor sim(5,3)which relates the change of the  field

barrier magnitude to the change of the well magnitude with energy increament, for
two different values of the qubit barrier magnitude. The Hadamard Time becomes
minimum for a certain value of the similarity function. Both the minimum value and
the minimum position are increasing functions of the qubit barrier magnitude. Quite
impressively, the minimum region corresponds to much larger values of the similarity
factor compared to the case of the perfectly isolated DWP. Actually, their difference
is equal to one order of magnitude. In addition, minimum Hadamard Time becomes
much smaller, enabling fast but still stable quantum calculations. Interestingly
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enough, the curve corresponding to the larger qubit barrier, is positioned under the
smaller qubit barrier curve, after a characteristic value of the similarity factor.

As far as the exponential decay rate is concerned, we compare the case where
both field barriers, f; and f>, are present, with the one where only the field barrier f; is
active. In Figure 8, we have sketched the decay rate as a function of the similarity
factor Sim(eg ,9), for the previously mentioned field presences, examining separately

three different values of the /> magnitude: greater, equal and less than the f; magnitude
where the latter is assumed to remain constant. In each case the two rates come in
different orders of magnitude and their difference is an increasing function of the />
barrier magnitude. Hence, the qubit state decays much faster due to the presence of a
double field barrier. However, for large values of the similarity factor, the two rates
become nearly equal, since then the dominant mechanism is the internal oscillation
and not decoherence. Finally, let us assume that f; stands for the system intera-ction
with its environment while f; electrostatically controls the qubit. Interestingly enough,
the case of nearly equal barriers, as is shown in figure 8c, does not speed up the
system’s decay compared to the situation where control is absent. In other words, we
can control the qubit without accelerating its decoherence.

APPENDIX A:
Analvtic calculation of the propagation amplitudes bevond Yl

i) Transition Amplitude Y**

This includes propagation inside the classically allowed region of state |0> and the

classically forbidden internal barrier X . This will affect the eigenvalues of state |0>

which will be naturally perturbed. We wuse the following symbolism:
Y- E{L = >“<} A, (b;1r,), in order to indicate the fact that we must first alternate

region L with the one of the internal barrier, in all possible (infinite) ways between
points 7; and b, and then propagate in all possible ways from point b to r,, while
staying at region L. So, we must first come to point b which is common for the two
regions and this results to 4, (r;b). Then we interchange the two regions in all possible
ways, starting and ending at turning point b. We finally propagate inside region L,
between b and . According to the above we have:

Y5 = A, (r;;b) A (b;b) {1 - 4, (b;b) A.(b; b)) 4, (b;1,) (A-1)

Repeating the procedure of the previous paragraph, by substituting the phase event
factors and doing the tedious algebra we find:

. Im 97" Im 9~"*
yii L _pomd, ImJ, L L (A-2)
9 Re 3 = 89&°
b " Red — %
4+¢,
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1) Transition Amplitude Y***

In this case state |0) not only interacts with the internal barrier but with state |1) as

well. It is obvious that we must first come to turning point ¢, by interchanging in all
possible ways the regions of L, X, R, and then interchange the couples (L, X ) and (R,
%) in all possible ways. Finally we can propagate to point 7, through the couple (L, %)
or by staying entirely at region L. Putting all these together we get

e ={r e g gi-{e e R ] [{L e 1) .t
(A-3)

Table A; that follows contains the above coupled regions propagation amplitudes as
these are calculated in terms of fundamental amplitudes:

Amplitudes for Function of Fundamental Amplitudes
the regions L, X, R

{Le %) .
A,(r:b) A, (b;c) {1 — 4, (b;b) A, (b;b)}

{L = 52} ;
A, (b;b) A, (b;c){1— A4, (b;b) A, (b;)}
{L = 52} )
A, (b;b) A, (b;b)[1— 4, (b;b)A.(b;b)| A, (b;r,)
{R = ;}

4,(6;0)A.(c;0){1 - A (5004 (cs0)}

TABLE A,. Calculation of the coupled regions ({L, X }, {R, X }) path integral amplitudes in
terms of fundamental amplitudes.

Repeating the procedure of the previous paragraph, by substituting the phase event
factors and completing the tedious algebra, we find:

1
22(22Im3 E " + Re d
Re b_é:b ( bgﬁz b)+
R 4+¢,
MBI %) £ (2o - m) o
3 4+ &7
_ 1
a 22
Red, 5, D
4+¢,

where the twofold symbols * that appear in the first fractional term, mean that we
must actually sum two fractions, one for each sign.
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iii)  Transition Amplitude Y"***

In this case state ‘0> not only interacts with state ‘1> through the internal barrier but

with the field barrier X as well. This will force the system to decay. It is obvious that
we must first combine the three regions L, % ,R, by propagating from r; to turning
point d, and then combine regions X,R,X, by propagating from d to b, and then
alternate the couple (L, %X ) with (R, %) in all possible ways. Finally we can propagate
to point 7, through the couple (L,%X) or by staying entirely at region L. Putting all
these together we get:

TERE L2 s (cd)[1+{R2 7 [ 1-{R 2! 5L 2 %]
{re2) Rja(eh)|1+{x 2 RY|[1-{x 2! R}{x 2 R}]
_1—(—i)AL(r1;b) (L2 %} 4,(c:d)

(e R} (c;b)| 1+ {% 22 R}]

_1+{L 2 3R ;}[1 ~{R2! %ML

In Table A, that follows we have calculated the coupled regions propagation
amplitudes of this category, in terms of fundamental amplitudes.

Amplitudes of the Function of Fundamental Amplitudes
regions L,X,R
(R %) ;
A4, (c;0) A (c;0)[1- A, (c;¢)A.(¢;0)]
o=
A, (b;0) 4, (b;b)[1- 4, (b;5)A.(b;b)]!
i)
A (c;d)A(c;)[1- A, (c;0)A(c;0)]
=
A(c;0) A ()1 = A, (¢;0) A (50)]
=y

A (d;d)4,(c;d)[1 - A.(d;d) 4, (c;0)]

TABLE A,. Calculation of the coupled regions ({R, X}, {L, X}, {X,L}) path
integral amplitudes in terms of fundamental amplitudes.
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The field barrier X acquires a phase factor and forms the following barrier magnitude

e

exp[— [7(y)dy } =e¢ 7Y =y, . Putting the above together and completing the tedious
d
algebra, we finally get:
3 1
_ [(ﬁ ImJ,E ™" +Red, ) ?
_ i(£2Re 4. —~Im 3
criar. aea | 29Red, - ( ' Vbz b) (A-6)
YL’;’R’; :2Im19rl VIm19rz 4+§b
l9[7

where quantity p is defined as

1/2

po)agrgs s U457) % Red (a7
b

Again the symbol * that appears in eq. (18), means that we must actually sum two
fractions, one for each sign.

iv)  Transition Amplitude Y*****

State ‘1> has already interacted with the total region on its right side, before reaching

point a in order to interact with the second field barrier X. A second channel of decay
appears now. Thus we need to modify all the previously calculated transition
amplitudes in such a way that propagation ends at turning point a instead of r,. Thus

Y "% (r;a) to describe the sum of the previously calculated

we use the symbol
amplitudes for 7, = a. Modifying in this way the amplitudes we get:

Yo = A,(30)+ 4, (ra)(=i) 4, (a;a) + 4, (1:b)(~) 4, (b;) (A-8)
YrLlia = 4,(:b) A, (b;b) {1 - 4,(b:b) A (b:b)} " 4, (bsa) (A-9)

i ={re kel 1-{te iR )] (L) 4 (o)
(A-10)
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VRS = (L2 af (s d)| 1+ {R 2 %

£2=3 R}Iég(c;b)[l+{>"< 20 R|]

}
{; o R}Ai(c;b)[l +{§ =3 R}][1 ~{x 2 R

:1 Hra; R sj[1-{r2! {2 x}]l}[l +{L 22} %}]4,(bsa)

Obviously

YL+>‘<+R+>'<(”1;a) — Y’[,l‘*)a +Y YLXR YLXRX (A'12)

Vi*)ll r1~>a 7’14)(1

The combination of the above with the field barrier X%, according to our
aforementioned directions, gives the following:

YL,x,R,;,; _ [Y“;JrRﬁ(rl;a)A;(a;a) + (Y“;*R*;(rl;a)A;(a;a))z +} AL(a;a) =
(A-13)

o o -1

YL+X+R+X(I’1;(1)A>—<(CZ;CZ)[1 _YL+x+R+x(},i;a)A;(a;a):| AL(CZ;CZ)

where a single propagation inside field barrier X acquires a phase factor that forms

zf(y)dy

i &b
21+57/4

the following barrier magnitude exp [—

} @ = & and where of course
A (a;a) =

Putting all these together we get the total transition amplitude for propagation
between points 7; and a in the following form

Ytotal — YL+><+R+>_<(rl;a) + YL,x,R,x,x =

e A a) A (e ) (A-14)
Y\O +x+\1 +><(r a)Ax(a a)

Y (s a) A (s @) {[2911{&5} - Y“%RR(’EQG)} + Y (sa)
b b

=Y (530) A, (as0)

Ytatal — YL+><+R+>‘<(r1;a) +

Ytotal _

It is interesting to notice that the pole condition: 1-Y""**"(r;a)4 (a;a)=0,
transforms the total amplitude in its much simpler form
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1

Ytoml — § § _ _
2{1-Y"""%(r:a) 4. (a;0)} 9, Re 9,

(A-15)

APPENDIX B:

Analvtic calculation of the energy poles of each propagation amplitude beyond
that of region L.

Regions L and % contribute with the extra pole term:

Pole" {Reg_é } (B-1)
4+§

It is obvious however, that the complex denominator of the above fraction cannot be
in any way equal to zero. Thus, we expand the denominator around the eigenvalues of
the isolated unperturbed well. Doing so we find

Pole, 1% - { { Y dé(b)( fcw(b)] l.(dm)jléin }} (B-2)

dE dE, ) 4

Thus the perturbed eigenvalues become complex and equal to

zH = E - & a"Eb))(2N2{a"5b))) ~i(a"8(p))’ (B-3)

where the subscript # denotes calculation on the eigenvalue £, and where the symbol
d"" denotes derivation with respect to the eigenvalue £,

1) Regions L, X and R contribute with two extra pole terms (one for each
sign):
£2 g £ -l a £2 g £ -1 a -
+ - + -
Pole* — |2)Red - & (£2Im 88, +Re 3) y £’ (£2Re 8¢, ~Im 3) (B-4)
4+ &7 4+¢&7
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The two fold signs that appear in the above formula translate to the doublet splitting
that was previously described. Hence, we develop the denominator of the above
fraction around the eigenvalues E, of the unperturbed well, to get

1
& (7205,
{{a9w))(-4+&,0)£2{d"Ew)) &, +i28, {{aE@)| &, 7 (a9
(B-5)

Pole, " ~

E-FE +

The perturbed eigenvalues become then complex and equal to

i {—{dﬁué(b)}"g;"(l o j {dEé(b)}§” {dfﬂé(b)}éb,fx({dfﬂé(b)})}

n - En - R — N2~
{—{d 9(b>}(1— jr{dﬂé(b)}"g;} v lla )8, 7 ({a )|
(B-6)
1) Regions L, X, R, %X contribute with two extra pole terms (one for each
sign), coming through the fraction:
PoleL5R% _ _ le o
4Red, -9, + 9
Pole™*R* ! . (B-7)
- 2 < -
DN . 4¢y,) 9 Red
4Red, — 29, +1-45797 + (fg”y a3 )2 R
4Red, -, '9b) +( b7d)

For once more, we develop the denominator around the eigenvalues E, of the
unperturbed well to get

(—ifb’n 12) +
~4{d (b)) +2E,  {aBEB)|+{d45®)) €,

PolenL,X,R,X .

(E-E,){ _ _ § d"3(b)ke
&, 2{d"Eb)}+2i{d"9(b)) —41'{ — }A .
yd,n - gb,n
(B-8)
Thus the perturbed eigenvalues become complex and equal to
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{:sz,,, {{a=am))(4-¢,7) %28, {d“Ew)}}+28," [{df'é(b)}: g, {d"3m)}- 2({015([;)}75}
VanSon) = Som

LERZ _ o _

n

fla=am)(a-&.)28, {dﬂf(b)}}ﬁ{zf,,,f [{dﬂab)}:;; {dfv'ﬁ(b)}—z({fl”;(%}}
VanSon) ~Sba

{¢4<§,],,ﬁ(;{dﬁ§(b>}:i’"{df'@(b)}t{df'é(b)};”’;zf”ﬂlz}

dn b

+i 2
(- a0)(4-&. )28, {20 + 28| e donjd, oo} 2 2O
(7d‘,,§m ) - 5;,,,,4
(B-9)

ii1) Regions L, %X, R,%Xand X contribute with two extra pole terms, (one for
each sign), arising through the following condition as this is induced by eq.

(23):
= - - 1/2
re -, 2| 4(a) + L ARAD)
(4 Re lgb - é:bzlgb) + (fb?d) (B-lO)
_(1+i){Re§b +Im§b}$: 0

a

We develop the above quantity around the eigenvalues E, of the unperturbed wells
and impose the:

_ 5 2 _ 5 2
_i[gb,nz—i_ ‘14”’ j$2§b,n_ ‘Z" +

{dE”g(b)}[—4 g, —5"7”’} +2i8, a0 - a5 @) - (B-11)

(E-E,) $é?b,n[—2{dE"g?(b)}+Zi{dE”g(b)}—4i{dE"§(b)}#’”}2J =0
J/d,n - b.n
~i G{dﬁ"@(b)} + {dE“g(a)}j 5";

Thus, once more the perturbed eigenvalues become complex and equal to
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{df S(a)} 2, {d" §(b)}}

[+2§, :—] {{df 9(b)}[4 +& 2 j

[ 28, j{z; [{d’f"f(b)} &, {d" b)) +2{d" 3(1;)}7"3 :’5 ZJ—d"z”’G{d’f"g(b)}+{d5“5(a)}j}

{df a(a)}}z

{ze?h‘,,z({df"é(b)}x&”‘{df~§<b>}iz{dﬂ'é(m}sz”"5 j—%( @30} + {df"S(a)})}

LERZ%
ZVI

-E —

n - F

{{df 9<b>}[4+; —%}2{; (a= &by} -2

8*207,(*\‘ 21, (V)+4, (4)
_'—_2 e*¢'( &) _

T)Hze*“’"'“ ({df 5(5)}— " 9(b)) + Z{df'@(b)}%wj —%(7{415 3(b)}+ {df“g(a)}j} +

) s el

54 j+2e¢‘“{df b)) : {dfé(a)}}
{{dﬁ'g(b)}[4+é 757}2; ld"ew))-= {dE‘S(“)}}

+i

{25,”,2[{d’f“é(b)ﬁfh‘”‘{d’*.?(b)}iz{d’f@(b)};”';1_}7;;” jf%( {d"3(b)}+ {dE"g(a)}j}

(B-12)
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